Assignment 1:

1)

First we compute the local stiffness matrices in global coordinate:

- Bar 1:

Bar 1 is rotated an angle $\theta_{1}=\alpha+90^{\circ}$:

$$
\begin{aligned}
\cos \left(\theta_{1}\right)=-\sin (\alpha) & =-s \\
\sin \left(\theta_{1}\right)=\cos (\alpha) & =c
\end{aligned}
$$

The length of the bar is:

$$
L_{1}=\frac{L}{\cos (\alpha)}=\frac{L}{c}
$$

The local stiffness matrix expressed in the global coordinates is:

$$
K_{1}=\frac{E A}{L}\left[\begin{array}{cccc}
c s^{2} & -c^{2} s & -c s^{2} & c^{2} s \\
-c^{2} s & c^{3} & c^{2} s & -c^{3} \\
-c s^{2} & c^{2} s & \mathrm{cs}^{2} & -c^{2} s \\
c^{2} s & -c^{3} & -c^{2} s & c^{3}
\end{array}\right]
$$

- Bar 2:

Bar 2 is rotated an angle $\theta_{2}=90^{\circ}$:

$$
\begin{aligned}
& \cos \left(\theta_{2}\right)=0 \\
& \sin \left(\theta_{2}\right)=1
\end{aligned}
$$

The length of the bar is:

$$
\mathrm{L}_{2}=\mathrm{L}
$$

The local stiffness matrix expressed in the global coordinates is:

$$
\mathrm{K}_{2}=\frac{\mathrm{EA}}{\mathrm{~L}}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

- Bar 3:

Bar 3 is rotated an angle $\theta_{3}=90^{\circ}-\alpha$:

$$
\begin{aligned}
& \cos \left(\theta_{3}\right)=\sin (\alpha)=\mathrm{s} \\
& \sin \left(\theta_{3}\right)=\cos (\alpha)=\mathrm{c}
\end{aligned}
$$

The length of the bar is:

$$
L_{3}=\frac{L}{\cos (\alpha)}=\frac{L}{c}
$$

The local stiffness matrix expressed in the global coordinates is:

$$
K_{3}=\frac{E A}{L}\left[\begin{array}{cccc}
{c s^{2}}^{2} & c^{2} s & -c s^{2} & -c^{2} s \\
c^{2} s & c^{3} & -c^{2} s & -c^{3} \\
-\mathrm{cs}^{2} & -c^{2} s & \mathrm{cs}^{2} & c^{2} s \\
-c^{2} s & -c^{3} & c^{2} s & c^{3}
\end{array}\right]
$$

Assembling the global matrix:

$$
\mathrm{K}_{1}=\frac{\mathrm{EA}}{\mathrm{~L}}\left[\begin{array}{cccccccc}
2 \mathrm{cs}^{2} & 0 & -\mathrm{cs}^{2} & \mathrm{c}^{2} \mathrm{~s} & 0 & 0 & -\mathrm{cs}^{2} & -\mathrm{c}^{2} \mathrm{~s} \\
0 & 2 \mathrm{c}^{3}+1 & \mathrm{c}^{2} \mathrm{~s} & -\mathrm{c}^{3} & 0 & -1 & -\mathrm{c}^{2} \mathrm{~s} & -\mathrm{c}^{3} \\
& & \mathrm{cs}^{2} & \mathrm{c}^{2} \mathrm{~s} & 0 & 0 & 0 & 0 \\
& & & \mathrm{c}^{3} & 0 & 0 & 0 & 0 \\
& & & & 0 & 0 & 0 & 0 \\
& & & & & 1 & 0 & 0 \\
\text { symm } & & & & & & \mathrm{cs}^{2} & \mathrm{c}^{2} \mathrm{~s} \\
& & & & & & \mathrm{c}^{3}
\end{array}\right]
$$

The only external forces acting over the structure are H and P . The system of equations to be solved is:

The $5^{\text {th }}$ row and column contain only zeros because they are related to the horizontal displacement and force on node 3 . Since the forces in the bars are assumed to be only axial and bar 2 is a vertical bar, there can be no force in the horizontal direction in that bar.

2)

The boundary conditions are the following:

- Dirichlet bc:

$$
\left\{\begin{array}{l}
\mathrm{u}_{\mathrm{x} 2}=0 \\
\mathrm{u}_{\mathrm{y} 2}=0 \\
\mathrm{u}_{\mathrm{x} 3}=0 \\
\mathrm{u}_{\mathrm{y} 3}=0 \\
\mathrm{u}_{\mathrm{x} 4}=0 \\
\mathrm{u}_{\mathrm{y} 4}=0
\end{array}\right.
$$

- Forces: Vertical force -P and horizontal force H in node 1.

After applying the boundary conditions, the reduced system of equations is obtained:

$$
\frac{\mathrm{EA}}{\mathrm{~L}}\left[\begin{array}{cc}
2 \mathrm{cs}^{2} & 0 \\
0 & 2 \mathrm{c}^{3}+1
\end{array}\right]\left[\begin{array}{c}
\mathrm{u}_{\mathrm{x} 1} \\
\mathrm{u}_{\mathrm{y} 1}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{H} \\
-\mathrm{P}
\end{array}\right]
$$

3)

Solving the reduced system of equations:

$$
\left\{\begin{array}{c}
u_{x 1}=\frac{H L}{2 \mathrm{cs}^{2} E A} \\
\mathrm{u}_{\mathrm{y} 1}=-\frac{\mathrm{PL}}{\left(2 \mathrm{c}^{3}+1\right) \mathrm{EA}}
\end{array}\right.
$$

For $\alpha \rightarrow 0, \sin (\alpha)=s=0$ and $\cos (\alpha)=c=1$. In this case, the structure is made only of vertical bars and the bars cannot hold horizontal forces. Then, if $\mathrm{H} \neq 0, \mathrm{u}_{\mathrm{x} 1} \rightarrow \infty$. The problem in the vertical direction can be considered as a bar with area 3A and an axial force P. Thus, the vertical displacement of node 1 will be $u_{y 1}=-\frac{P L}{3 E A}$, which is the result obtained.

For $\alpha \rightarrow \frac{\pi}{2}, \cos (\alpha)=c=0$ and $\sin (\alpha)=s=1$. In this case, bars 2 and 3 become horizontal bars with infinite length and the only bar that can have vertical forces is bar 2. The problem in the vertical directiong can be considered as a bar with area A and length L and an axial force P. Thus, the vertical displacement obtained will be $u_{y 1}=-\frac{P L}{E A}$, which is the result obtained.

4)

The axial forces are computed from the horizontal displacements of the bars in the local coordinate system:

- Bar 1:

$$
\begin{gathered}
\overline{\mathrm{u}}_{\mathrm{x} 1}^{1}=-\mathrm{u}_{\mathrm{x} 1} \sin (\alpha)+\mathrm{u}_{\mathrm{y} 1} \cos (\alpha)=-\frac{\mathrm{HL}}{2 \operatorname{csEA}}-\frac{\mathrm{PLc}}{\left(2 \mathrm{c}^{3}+1\right) E A} \\
\overline{\mathrm{u}}_{\mathrm{x} 2}^{1}=0
\end{gathered}
$$

The elongation of the bar is:

$$
\mathrm{d}^{1}=\overline{\mathrm{u}}_{\mathrm{x} 2}^{1}-\overline{\mathrm{u}}_{\mathrm{x} 1}^{1}=\frac{\mathrm{HL}}{2 \operatorname{csEA}}+\frac{\mathrm{PLc}}{\left(2 \mathrm{c}^{3}+1\right) E A}
$$

The force in bar 1 is:

$$
\mathrm{F}^{1}=\frac{E A}{\mathrm{~L}^{1}} \mathrm{~d}^{1}=\frac{\mathrm{EAc}}{\mathrm{~L}} \mathrm{~d}^{1}=\frac{\mathrm{H}}{2 \mathrm{~s}}+\frac{\mathrm{Pc}^{2}}{2 \mathrm{c}^{3}+1}
$$

- Bar 2:

$$
\begin{gathered}
\overline{\mathrm{u}}_{\mathrm{x} 1}^{2}=\mathrm{u}_{\mathrm{y} 1}=-\frac{\mathrm{PL}}{\left(2 \mathrm{c}^{3}+1\right) \mathrm{EA}} \\
\overline{\mathrm{u}}_{\mathrm{x} 2}^{2}=0
\end{gathered}
$$

The elongation of the bar is:

$$
\mathrm{d}^{2}=\overline{\mathrm{u}}_{\mathrm{x} 2}^{2}-\overline{\mathrm{u}}_{\mathrm{x} 1}^{2}=\frac{\mathrm{PL}}{\left(2 \mathrm{c}^{3}+1\right) \mathrm{EA}}
$$

The force in bar 2 is:

$$
F^{2}=\frac{E A}{L^{2}} d^{2}=\frac{E A}{L} d^{2}=\frac{P}{2 c^{3}+1}
$$

- Bar 3:

$$
\begin{gathered}
\overline{\mathrm{u}}_{\mathrm{x} 1}^{3}=\mathrm{u}_{\mathrm{x} 1} \sin (\alpha)+\mathrm{u}_{\mathrm{y} 1} \cos (\alpha)=\frac{\mathrm{HL}}{2 \operatorname{csEA}}-\frac{\mathrm{PLc}}{\left(2 \mathrm{c}^{3}+1\right) \mathrm{EA}} \\
\overline{\mathrm{u}}_{\mathrm{x} 2}^{3}=0
\end{gathered}
$$

The elongation of the bar is:

$$
d^{3}=\bar{u}_{\mathrm{x} 2}^{3}-\bar{u}_{\mathrm{x} 1}^{3}=-\frac{\mathrm{HL}}{2 \operatorname{csEA}}+\frac{\mathrm{PLc}}{\left(2 \mathrm{c}^{3}+1\right) \mathrm{EA}}
$$

The force in bar 3 is:

$$
\mathrm{F}^{3}=\frac{E A}{\mathrm{~L}^{3}} \mathrm{~d}^{3}=\frac{E A c}{\mathrm{~L}} \mathrm{~d}^{3}=-\frac{\mathrm{H}}{2 \mathrm{~s}}+\frac{\mathrm{Pc}^{2}}{2 \mathrm{c}^{3}+1}
$$

For the limit case where $\alpha \rightarrow 0(\sin (\alpha)=s=0$ and $\cos (\alpha)=c=1)$, the structure is only made of vertical bars and cannot hold the horizontal force H , which should be hold by
bars 1 and 3. Then, if $\alpha \rightarrow 0$ and $H \neq 0$, the forces F^{1} and F^{3} "blow up" (they tend to infinite as they have a term divided by 0).

