Computational Strictural Mechanies \& Dynamies
M.Mohsen Zadehkamand

Assignment 2.1.2.2.2.3
M.S. Computational Mechanies (2si7) (19 Feb 2017)

Assignment 2.1
sym.

sym.

Anti Sym.

$$
\frac{1}{2}
$$

halk

Amingnuent 2.2

$N-I-D \rightarrow$ Point or Restrain Loading (consentrated)
$M=J \rightarrow$ Entrant Corners (Bot cord)
B-F \rightarrow Entrant Corners (Top cord)
(Assignment 2.3 Variational Formulation.

$$
\begin{aligned}
& A=A_{i}(1-\xi)+A_{j} \xi \\
& q(x)=\rho A \omega^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& W=\int_{0}^{L} q u d x \\
& \left.w^{e}=\int_{0}^{1} q w^{\top} u^{e}\right)(\ell d \xi) \\
& w^{e}=\left(x^{e}\right)^{T} \int_{0}^{1} q\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] e d \xi \\
& \Rightarrow f_{\text {ext }}=\int_{0}^{1} P\left(A_{i}(1-\xi)+A_{j} \xi\right) \omega^{2} \xi l\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] l d \xi \\
& =p \omega^{2} l^{2} \int_{0}^{1}\left[\begin{array}{l}
A_{i} \xi(1-\xi)^{2}+A_{j} \xi^{2}(1-\xi) \\
A_{i} \xi^{2}(1-\xi)+A_{j} \xi^{3}
\end{array}\right] d \xi \\
& =\rho \omega^{2} l^{2} \int_{0}^{1}\left[\begin{array}{l}
A_{i}\left(\xi^{3}+\xi-2 \xi^{2}\right)+A_{j}\left(\xi^{2}-\xi^{3}\right) \\
A_{i}\left(\xi^{2}-\xi^{3}\right)+A_{j} \xi^{3}
\end{array}\right] d \xi \\
& =p^{2} l^{2}\left[\begin{array}{l}
A_{i}\left(\xi^{4} / 4+\xi^{2} / 2-\frac{2}{3} \xi^{3}\right)+A_{j}\left(\xi^{3} / 3-\xi^{4} / 4\right) \\
A_{i}\left(\xi^{3} / 3-\xi^{4} / 4\right)+A_{j} \xi^{4} / 4
\end{array}\right] \text {. } \\
& =\rho \omega^{2} l^{2}\left[\begin{array}{l}
A_{i}\left(\frac{1}{4}+\frac{1}{2}-\frac{2}{3}\right)+A_{j}\left(\frac{1}{3}-\frac{1}{4}\right) \\
A_{i}\left(\frac{1}{3}-\frac{1}{4}\right)+A_{j} \frac{1}{4}
\end{array}\right]=\rho \omega^{2} l^{2}\left[\begin{array}{l}
\frac{1}{12} A_{i}+\frac{1}{12} A_{j} \\
\frac{1}{12} A_{i}+\frac{1}{4} A_{j}
\end{array}\right] \\
& =\frac{1}{12} p^{2} l^{2}\left[\begin{array}{l}
A_{i}+A_{j} \\
A_{i}+3 A_{j}
\end{array}\right] \\
& \text { if } A=A_{i}=A_{j} \rightarrow \text { hex }=\left[\begin{array}{l}
f_{0} \\
f_{1}
\end{array}\right]=\frac{1}{12}{p \omega^{2} \theta^{2}}^{2}\left[\begin{array}{c}
2 A \\
4 A
\end{array}\right]=\frac{1}{6} p \omega^{2} l^{2}\left[\begin{array}{c}
A \\
2 A
\end{array}\right] \\
& \text { (f) }
\end{aligned}
$$

