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1 To show the master stiffness equations, we use the following formula to get the stiffness equation for 

each element, 

 

𝐸𝑒𝐴𝑒

𝐿𝑒 [

𝑐2 𝑠𝑐
𝑠𝑐 𝑠2

−𝑐2 −𝑠𝑐
−𝑠𝑐 −𝑠2

−𝑐2 −𝑠𝑐
−𝑠𝑐 −𝑠2

𝑐2 𝑠𝑐
𝑠𝑐 𝑠2

]

[
 
 
 
 
 𝑢𝑥𝑖

(𝑒)

𝑢𝑦𝑖
(𝑒)

𝑢𝑥𝑗
(𝑒)

𝑢𝑦𝑗
(𝑒)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑓𝑥𝑖

(𝑒)

𝑓𝑦𝑖
(𝑒)

𝑓𝑥𝑗
(𝑒)

𝑓𝑦𝑗
(𝑒)

]
 
 
 
 
 

 

The transformation matrix is 

T = [

𝑐 𝑠
−𝑠 𝑐

0 0
0 0

0 0
0 0

𝑐 𝑠
−𝑠 𝑐

] 

By assuming the angle between the wall (along x-coordinate) and the truss is β, where β + α =
𝜋

2
, as 

shown in figure 1. 

 
 

 

For element 1, we have 

sin(−β) = −a = c, cos(−β) = b = s 

thus, 

𝐸(1)𝐴(1)

𝐿(1)
[

𝑏2 −𝑎𝑏
−𝑎𝑏 𝑎2

−𝑏2 𝑎𝑏
𝑎𝑏 −𝑎2

−𝑏2 𝑎𝑏
𝑎𝑏 −𝑎2

𝑏2 −𝑎𝑏
−𝑎𝑏 𝑎2

]

[
 
 
 
 
 𝑢𝑥2

(1)

𝑢𝑦2
(1)

𝑢𝑥1
(1)

𝑢𝑦1
(1)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑓𝑥2

(1)

𝑓𝑦2
(1)

𝑓𝑥1
(1)

𝑓𝑦1
(1)

]
 
 
 
 
 

 

For element 2,we have 

sin (−
𝜋

2
) = −1, cos (−

𝜋

2
) = 0 

thus, 

Figure 1 geometry analysis and notation explanation 

http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJ6J6dCplckCFUJHGgodClMNeg&url=http://www.talent.upc.edu/blog/la-upc-en-el-puesto-47-del-mundo-en-ingenieria-civil-y-estructural-y-entre-las-universidades-top-200-del-ranking-qs/&psig=AFQjCNE0jUAv7N2zgI7We3Mch8ZAnGMBJA&ust=1447776409987417
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJ6J6dCplckCFUJHGgodClMNeg&url=http://www.talent.upc.edu/blog/la-upc-en-el-puesto-47-del-mundo-en-ingenieria-civil-y-estructural-y-entre-las-universidades-top-200-del-ranking-qs/&psig=AFQjCNE0jUAv7N2zgI7We3Mch8ZAnGMBJA&ust=1447776409987417
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𝐸(2)𝐴(2)

𝐿(2)
[

0 0
0 1

0 0
0 −1

0 0
0 −1

0 0
0 1

]

[
 
 
 
 
 𝑢𝑥3

(2)

𝑢𝑦3
(2)

𝑢𝑥1
(2)

𝑢𝑦1
(2)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑓𝑥3

(2)

𝑓𝑦3
(2)

𝑓𝑥1
(2)

𝑓𝑦1
(2)

]
 
 
 
 
 

 

For element 3, we have 

sin(π − β) = sin(β) = cos(α) = 𝑐, cos(π − β) = −sin(α) = −s 

 

thus, 

𝐸(3)𝐴(3)

𝐿(3)
[

𝑠2 −𝑠𝑐
−𝑠𝑐 𝑐2

−𝑠2 𝑠𝑐
𝑠𝑐 −𝑐2

−𝑠2 𝑠𝑐
𝑠𝑐 −𝑐2

𝑠2 −𝑠𝑐
−𝑠𝑐 𝑐2

]

[
 
 
 
 
 𝑢𝑥4

(3)

𝑢𝑦4
(3)

𝑢𝑥1
(3)

𝑢𝑦1
(3)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑓𝑥4

(3)

𝑓𝑦4
(3)

𝑓𝑥1
(3)

𝑓𝑦1
(3)

]
 
 
 
 
 

 

According to the known conditions, that, 

𝐿(3) = 𝐿(1) =
𝐿

𝑎
=

𝐿

𝑐
 

a = c, b = s  

The three stiffness equations are written in terms of s,c 

Local stiffness equation element 1: 

 

𝐸𝐴

𝐿
[

𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 𝑐3

−𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 −𝑐3

−𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 −𝑐3

𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 𝑐3

]

[
 
 
 
 
 𝑢𝑥2

(1)

𝑢𝑦2
(1)

𝑢𝑥1
(1)

𝑢𝑦1
(1)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑓𝑥2

(1)

𝑓𝑦2
(1)

𝑓𝑥1
(1)

𝑓𝑦1
(1)

]
 
 
 
 
 

 

Local stiffness equation element 2: 

𝐸𝐴

𝐿
[

0 0
0 1

0 0
0 −1

0 0
0 −1

0 0
0 1

]

[
 
 
 
 
 𝑢𝑥3

(2)

𝑢𝑦3
(2)

𝑢𝑥1
(2)

𝑢𝑦1
(2)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑓𝑥3

(2)

𝑓𝑦3
(2)

𝑓𝑥1
(2)

𝑓𝑦1
(2)

]
 
 
 
 
 

 

Local stiffness equation for element 3: 

𝐸𝐴

𝐿
[

𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 𝑐3

−𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 −𝑐3

−𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 −𝑐3

𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 𝑐3

]

[
 
 
 
 
 𝑢𝑥4

(3)

𝑢𝑦4
(3)

𝑢𝑥1
(3)

𝑢𝑦1
(3)

]
 
 
 
 
 

=

[
 
 
 
 
 𝑓𝑥4

(3)

𝑓𝑦4
(3)

𝑓𝑥1
(3)

𝑓𝑦1
(3)

]
 
 
 
 
 

 

Because each node has two degree of freedoms, the total stiffness matrix should be a matrix which has 

eight rows and eight columns. The next step is the assembly process with two rules. The first rule is 

compatibility which means that the joint displacements of all members meeting at a joint must be the 

same. Besides the equilibrium rule is that the sum of forces exerted by all members that meet at a joint 

must balance the external force applied to that joint. With the two rules, we get the global stiffness 

matrix equation. 

Expanded element stiffness equation for element 1: 
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𝐸𝐴

𝐿

[
 
 
 
 
 
 
 

𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 𝑐3

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

−𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 −𝑐3

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

−𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 −𝑐3

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 𝑐3 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 𝑢𝑥1

(1)

𝑢𝑦1
(1)

𝑢𝑥2
(1)

𝑢𝑦2
(1)

𝑢3
(1)

𝑢3
(1)

𝑢4
(1)

𝑢4
(1)

]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1

(1)

𝑓𝑦1
(1)

𝑓𝑥2
(1)

𝑓𝑦2
(1)

𝑓3
(1)

𝑓3
(1)

𝑓4
(1)

𝑓4
(1)

]
 
 
 
 
 
 
 
 
 
 
 

 

Expanded element stiffness equation for element 1: 

 

𝐸𝐴

𝐿

[
 
 
 
 
 
 
 

0 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 𝑢𝑥1

(2)

𝑢𝑦1
(2)

𝑢𝑥2
(2)

𝑢𝑦2
(2)

𝑢3
(2)

𝑢3
(2)

𝑢4
(2)

𝑢4
(2)

]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1

(2)

𝑓𝑦1
(2)

𝑓𝑥2
(2)

𝑓𝑦2
(2)

𝑓3
(2)

𝑓3
(2)

𝑓4
(2)

𝑓4
(2)

]
 
 
 
 
 
 
 
 
 
 
 

 

Expanded element stiffness equation for element 1: 

 

𝐸𝐴

𝐿

[
 
 
 
 
 
 
 

𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 𝑐3

−𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 −𝑐3

−𝑐2𝑠 𝑐2𝑠
𝑐2𝑠 −𝑐3

𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 𝑐3

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0    0
0    0

       
0   0
0   0

0    0
0   0

       
0   0
0   0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 𝑢𝑥1

(3)

𝑢𝑦1
(3)

𝑢𝑥2
(3)

𝑢𝑦2
(3)

𝑢3
(3)

𝑢3
(3)

𝑢4
(3)

𝑢4
(3)

]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1

(3)

𝑓𝑦1
(3)

𝑓𝑥2
(3)

𝑓𝑦2
(3)

𝑓3
(3)

𝑓3
(3)

𝑓4
(3)

𝑓4
(3)

]
 
 
 
 
 
 
 
 
 
 
 

 

 

By the equilibrium rule, we obtain the master stiffness equation as follows: 

 

𝐸𝐴

𝐿

[
 
 
 
 
 
 
 
2𝑐𝑠2 0

0 1 + 2𝑐3
−𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 −𝑐3

−𝑐𝑠2  𝑐2𝑠
𝑐2𝑠 −𝑐3

𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 𝑐3

0   0
0   −1

−𝑐𝑠2 −𝑐2𝑠
−𝑐2𝑠 −𝑐3

0     0
0     0

0       0
0         0

  0          0
0    −1

            
0    0
0     0

−𝑐𝑠2      −𝑐2𝑠
−𝑐2𝑠   −𝑐3

0     0
0     0

0     0
0     1

0         0
0         0

0    0
0      0

𝑐𝑠2 𝑐2𝑠
𝑐2𝑠 𝑐3 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1

𝑢𝑦1

𝑢𝑥2

𝑢𝑦2

𝑢𝑥3
𝑢𝑦3

𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐻
−𝑃
0
0
0
0
0
0 ]

 
 
 
 
 
 
 

  

Now, we have proved the given equation. 
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Reasons that the row and column is zero in 5th can be explained from two aspects, mathematically and 

physically. We know that the stiffness matrix is the description for the property of the subject. In this 

case, the 5th row and column describe the displacement for node 3 in x coordinate. Since the geometry is 

symmetric, the zero-element is the matrix means the displacement of node 3 in x direction would not 

have any influence on other nodes. 

 

2 According to the figure 1.1, node 2, node 3 and node 4 are fixed point. We thus know that the 

boundary condition is that, 

[𝑢𝑥2 𝑢𝑦2 𝑢𝑥3 𝑢𝑦3 𝑢𝑥4 𝑢𝑦4]𝑇 = [0 0 0 0 0 0]𝑇 

So we can obtain the modified stiffness system: 

𝐸𝐴

𝐿
[2𝑐𝑠2 0

0 1 + 2𝑐3] *
𝑢𝑥1

𝑢𝑦1
+ = *

𝐻
−𝑃

+ 

This is 2-equation modified stiffness system! 

 

3 Continually, we can solve for 𝑢𝑥1 and 𝑢𝑦1, 

*
𝑢𝑥1

𝑢𝑦1
+ =

[
 
 
 

𝐻𝐿

2𝐸𝐴𝑐𝑠2

−𝑃𝐿

𝐸𝐴(1 + 2𝑐3)]
 
 
 
 

When α → 0,through Taylor expansion, we know that s = α , c = 1.So 𝑢𝑥1 → ∞ and 𝑢𝑦1 →
−𝑃𝐿

3𝐸𝐴
 In 

this case, we can think that the system has only one truss whose cross section area is 3A, so in y 

direction , we have 𝑢𝑦1 →
−𝑃𝐿

3𝐸𝐴
. While in x direction, the solution doesn’t make sense. A very small H 

would make 𝑢𝑥1 very large, which seems that the truss system is blown up. 

 

When α →
𝜋

2
, again through Taylor expansion, we obtain 𝑢𝑥1 → ∞ and 𝑢𝑦1 →

−𝑃𝐿

𝐸𝐴
. In this case, we can 

think that the system has only one truss whose cross section area is A, so in y direction, we have 

𝑢𝑦1 →
−𝑃𝐿

𝐸𝐴
. However, in x direction, when α →

𝜋

2
, element 1 and element 2 is going to be parallel to the 

x direction, so there is no boundary condition for node 2 and node 3, the displacement for node 1 in x 

direction can be any larger infinite. 

 

4 we firstly compute the local displacement through the transformation matrix. 

For element 1 

[
 
 
 
 
 𝑢𝑥2

(𝑙𝑜𝑐1)

𝑢𝑦2
(𝑙𝑜𝑐1)

𝑢𝑥1
(𝑙𝑜𝑐1)

𝑢𝑦1
(𝑙𝑜𝑐1)

]
 
 
 
 
 

= [

𝑐 𝑠
−𝑠 𝑐

0 0
0 0

0 0
0 0

𝑐 𝑠
−𝑠 𝑐

]

[
 
 
 
 
 

0
0

𝐻𝐿

2𝐸𝐴𝑐𝑠2

−𝑃𝐿

𝐸𝐴(1 + 2𝑐3)]
 
 
 
 
 

 

So we have 𝑢𝑥1
(𝑙𝑜𝑐1)

=
𝐻𝐿

2𝐸𝐴𝑠2 −
𝑃𝐿𝑠

𝐸𝐴(1+2𝑐3)
,  𝑢𝑥2

(𝑙𝑜𝑐1)
= 0  
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The elongation is d1= 𝑢𝑥1
(𝑙𝑜𝑐1)

− 𝑢𝑥2
(𝑙𝑜𝑐1)

=
𝐻𝐿

2𝐸𝐴𝑠2 −
𝑃𝐿𝑠

𝐸𝐴(1+2𝑐3)
 

So axial force 𝐹(1) =
𝐸𝐴𝑐

𝐿
∗ 𝑑1 =

𝐻𝑐

2𝑠2 −
𝑃𝑐𝑠

1+2𝑐3 

 

For element 2 

[
 
 
 
 
 𝑢𝑥3

(𝑙𝑜𝑐2)

𝑢𝑦3
(𝑙𝑜𝑐2)

𝑢𝑥1
(𝑙𝑜𝑐2)

𝑢𝑦1
(𝑙𝑜𝑐2)

]
 
 
 
 
 

= [

0 −1
1 0

0 0
0 0

0 0
0 0

0 −1
1 0

]

[
 
 
 
 
 

0
0

𝐻𝐿

2𝐸𝐴𝑐𝑠2

−𝑃𝐿

𝐸𝐴(1 + 2𝑐3)]
 
 
 
 
 

 

So we have 𝑢𝑥1
(𝑙𝑜𝑐2)

=
𝑃𝐿

𝐸𝐴(1+2𝑐3)
,  𝑢𝑥4

(𝑙𝑜𝑐2)
= 0  

The elongation is d2= 𝑢𝑥4
(𝑙𝑜𝑐2)

− 𝑢𝑥1
(𝑙𝑜𝑐2)

=
𝑃𝐿

𝐸𝐴(1+2𝑐3)
 

So axial force 𝐹(2) =
𝐸𝐴

𝐿
∗ 𝑑2 =

𝑃

1+2𝑐3 

 

For element 3 

[
 
 
 
 
 𝑢𝑥4

(𝑙𝑜𝑐3)

𝑢𝑦4
(𝑙𝑜𝑐3)

𝑢𝑥1
(𝑙𝑜𝑐3)

𝑢𝑦1
(𝑙𝑜𝑐3)

]
 
 
 
 
 

= [

−𝑠 𝑐
−𝑐 −𝑠

0 0
0 0

0 0
0 0

−𝑠 𝑐
−𝑐 −𝑠

]

[
 
 
 
 
 

0
0

𝐻𝐿

2𝐸𝐴𝑐𝑠2

−𝑃𝐿

𝐸𝐴(1 + 2𝑐3)]
 
 
 
 
 

 

So we have 𝑢𝑥1
(𝑙𝑜𝑐3)

= −
𝐻𝐿

2𝐸𝐴𝑐𝑠
−

𝑃𝐿𝑐

𝐸𝐴(1+2𝑐3)
,  𝑢𝑥4

(𝑙𝑜𝑐3)
= 0  

The elongation is d3= 𝑢𝑥4
(𝑙𝑜𝑐3)

− 𝑢𝑥1
(𝑙𝑜𝑐3)

= −
𝐻𝐿

2𝐸𝐴𝑐𝑠
−

𝑃𝐿𝑐

𝐸𝐴(1+2𝑐3)
 

So axial force 𝐹(3) =
𝐸𝐴𝑐

𝐿
∗ 𝑑3 = −

𝐻

2𝑠
−

𝑃𝑐2

(1+2𝑐3)
 (Compression) 

 

Now we can understand why 𝐹(3) and 𝐹(1) “blow up” if H ≠ 0  and α → 0. we find that in this case, 

𝐹(3) → ∞ and 𝐹(1) → ∞. For the truss, we apply even a very small H would result in an infinite axial 

internal force. This is impossible for the truss to maintain equilibrium in the real case. 
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