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Assignment 9.1

Describe in extension how can be applied a non-symmetric load to this formulation.

Assignment 9.2

Using thin beams formulation, describe the shape of the B(®) matrix and comment the integration rule.

1 Assignment 9.1

The application of non-symmetric loads into a formulation of axisymmetry shells require the utilization of semi-
analytical finite element processes, as reported in section 9.5 Zienkiewicz [1].

The resolution of this problem is obtained by extending the plates solution, therefore firstly an introduction to
the axisymmetry plates under non-symmetrical loads is presented. To this end Fourier expansions introduced and
loads in the problem are divided into symmetric and non-symmetric parts. Also a three-dimensional scheme is
considered for displacements given the loss of symmetry. Moreover, the loads are represented under schemes such
as those presented in Figure [T}
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Figure 1: Considering non-symmetric loads in axisymmetric structures. Left: Non-symmetric. Right: Symmetric.
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Under this conditions the strains have to be treated as three-dimensional as:
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Using the above expressions, the map of displacements in three dimensions and describing them using Fourier
series, an expression for Bf- is written as:

N; rcos(l - 6) 0 0
0 0 N; .cos(l-0)
Bl _ N;/r-cos(l-0) 1-N;/r-cos(l-0) 0
=t N; .cos(l - 6) 0 N rcos(l-6)
0 N; sin(l-0) —l-N;/r-sin(l-0)
—l-N;/r-sin(l-0) (N;, — N;/r)sin(l-0) 0

where the [ represent the harmonic modes considered in the Fourier series.

As seen from the matrix, a purely axisymmetric behaviour can be recovered for [ = 0. Then, to solve the problem
the loads have to be described using Fourier series as well having the scheme showed in the equation below. Its

worth mentioning that when [ = 0 the middle term (7") is zero, and the equation is constant in 6.
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on | R - cos®(1-0)
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1z cos?(1 - 0)

In this way, with every equation expressed in terms of the Fourier series, the semi-analytical finite element pro-
cesses can be solved.

Axisymmetric shells under non-symmetrical loads: Considering the aforementioned integration over # and using
I order of Fourier series to interpolate the symmetric and anti-symmetric loads (using the idea in Figure , the
equations below can be used to solve these axisymmetric shells under non-symmetrical lloads.
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Figure 2: Considering non-symmetric loads in axisymmetric shells. [I]
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2 Assignment 9.2

Using the Reissner-Mindlin thin beam formulation shear locking effects arise as also did for beam elements. The
simpler procedure to avoid shear locking is the reduced/selective quadrature. The reduced integration of the
membrane stiffness terms improves the in-plane behaviour and it also eliminates membrane locking that may
appear in same special cases. The simplest case for solving this problem is to use a 2-noded strip with a single
point quadrature. In Figure [3|shows the generalized strain matrix computed at the element mid-point [2].
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Figure 3: Two-noded flat shell strip element. Stiffness matrix computed using one single point reduced integration
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