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(1) Rewriting the formula from slide 7:
mii + ku = F (1)

The displacement u is divided into a homogenous and particular solutions
where:
U= up + up (2)

up, is solved for F' = 0, and u,, is a constant. Each are replaced in equation
(1) and solved, and then replaced in equation (2). The solution for each equation
are the following:

up, = Crsin(wt) + Cacos(wt)
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—u = Cysin(wt) + Cacos(wt) + —
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taking initial conditions as u(0) = uo & (0) =vo,weget C1 =2 & Cp =
Ug — % Therefore the solution is:

F F
u= %sin(wt) + (uo - k) cos(wt) + =

The natural frequency remains unchanged (w = y/k/m), and only the am-
plitude of the oscillations is changed, because F can be considered a constant
displacement of the system.

(2) The following is the representation of the given in problem (2):

The effective stiffness of a clamped beam with a force at the center is:
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Assuming it is a square beam, I = A2/12 therefore the stiffness is:

16E A2
b=—

Therefore the natural frequency is simply:
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(3) The equation from slide 20 is the following;:

m = / NTNpdV = pA / NTNdz

Where N is a vector of linear shape functions:
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The multiplication of the vectors is the following:
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Therefore, for each element and x between 0 and L, the integration of each
term multiplied by pA:

m = PA {L3—L3+L3/3 L3/2—L3/3} B [PAL PAL]
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(4) The same formulation will be followed but only changing the area for the
integration while the area has the following formula:

A(z) = A; + %(A2 —Ay)

The integration for the first term (m; with A; only)is still the same, but the
integration for the second term will change, and will be calculated as followed:

m = mi -+ mso
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my = m(part(3)) (for A= A;)
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(5) Slide 22 will be followed as an example. Each node has three d.o.f therefore
the diagonal mass matrix of the element is a 6 X 6 matrix for a two noded
element. the total mass of the element is pAL while p is the density, A is the
cross-sectional area and L the length of the element, and divided to each element
will half of its value, therefore the diagonal mass matrix is:
pAL
m =
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