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Assignment 9.1 
 

Describe in extension how can be applied a non-symmetric load on this formulation 

The axisymmetric shell formulation can be extended for an analysis under arbitrary loading. The main 

idea is to apply the finite strip method.  

This method consists on representing the loads and the displacements by means of Fourier series in 

the direction of circumference. Therefore, the Fourier expansions are written in term of the angle 𝛽. 

In this way, it is possible to assemble a stiffness matrix for every harmonic term and solve the 

displacements. 

The following figure shows an axisymmetric shell discretized in circular strips. 

 

The displacements are expanded in Fourier series along the circumferential direction splitting the 

displacement field in symmetric and anti-symmetric components. 

 

Being 𝒖′ 

 

And 𝑆𝑙 are the trigonometric functions of the l-th harmonic term, and 𝑎𝑖
𝑙 is the modal displacement 

amplitude vector. 

 

The previous equation shows the expression for the antisymmetric trigonometric function. The 

symmetric one is obtained simply swapping 𝑆𝑙 and 𝐶𝑙 . 

The loads are expanded in Fourier series analogously. 

 

The computation of the symmetric and anti-symmetric solutions is carried out separately to simplify 

the analysis. 
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The local stiffness matrix for an axisymmetric strip element is 

 

Where 

 

The computation of the local strain matrix is done and its transformation to the global axes is carried 

out. 

The expression for the equivalent nodal force vector for the 2-noded strip for different types of loads 

is presented below 

 

NOTE: All the procedure to implement arbitrary loads in the axisymmetric shell 

formulation with 2-noded strip has been extracted from [1]. 
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Assignment 9.2 
 

Using thin beams formulation, describe the shape of B(e) matrix and comment the 

integration rule 

 

Assuming the Kirchhoff theory, the normal to the generatrix remains straight and orthogonal 

after deformation. Therefore, the normal rotation coincides with the slope of the generatrix 

at each point.  

With this assumption the effect of the traverse shear deformation is neglected. For that 

reason, only membrane and bending strains are considered. 

 

Since the second derivative  of normal displacement appears, 𝐶1 continuity is needed for the 

approximation of 𝑤0. However, a 𝐶0 Lagrange approximation can be employed for the 

tangential displacement. 

The tangential displacement is interpolated as 

 

And the normal one with a 𝐶1 continuous approximation 

 

Being 𝑁𝑖
𝑤 the cubic 1D Hermite shape functions. 

The local generalized strain matrix is expressed as 

 

NOTE: Formulation extracted from [1] 
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Comments on integration rule 
 

The Gaussian quadrature is the best choice to integrate numerically the stiffness matrix and is 

generally recommended the use of two gauss points to obtain good results [2]. However, Grafton 

and Strone [3] suggested on their work an explicit formula for the stiffness matrix based on a single  

average value of the integrand (one-point Gaussian quadrature). This reduced integration is good 

enough for the regions with low stress gradients, but near the boundaries, the high gradients inside 

the boundary layers need local mesh refinements to achieve good results. The results presented by 

the authors cited above get good accuracy by means of this local refinement. 
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