CSMD: Assigment 9

Juan Pedro Roldán Blasco

April 2018

1 Non axy-simmetric loads formulation

In order to correctly represent non-symmetric loads within a 2D formulation, we can decompose loads and displacements into series of Fourier functions.

Loads can be described as

$$
\begin{equation*}
f(\theta)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty}\left(\frac{\operatorname{cosn} \theta}{\pi} \int_{-\infty}^{\infty} f(\theta) \operatorname{cosn} \theta d \theta+\frac{\operatorname{sinn} \theta}{\pi} \int_{-\infty}^{\infty} f(\theta) \operatorname{sinn} \theta d \theta\right) \tag{1}
\end{equation*}
$$

And displacements (axial, radial and circumferencial respectively) as

$$
\begin{align*}
u & =\sum_{i=1}^{\infty}\left(u_{a_{n}} \operatorname{cosn} \theta+u_{b_{n}} \sin n \theta\right) \tag{2}\\
v & =\sum_{i=1}^{\infty}\left(v_{a_{n}} \operatorname{cosn} \theta+v_{b_{n}} \sin n \theta\right) \tag{3}\\
w & =\sum_{i=1}^{\infty}\left(w_{a_{n}} \operatorname{cosn} \theta+w_{b_{n}} \sin n \theta\right) \tag{4}
\end{align*}
$$

These will make the strain matrices depend on circumferencial variable θ. Taking into account that Fourier series produce symmetric and non-symmetrix solutions, the approximation functions can be divided into symmetric and nonsymmetric. The formulation of the stiffness matrices are (a for symmetric $\mathrm{n}=0,2,4 \ldots$ and b for not symmetric $\mathrm{n}=1,2,3 \ldots$)

$$
\begin{align*}
\mathbf{k}_{a n} & =\pi \int_{A} \mathbf{B}_{a i}^{T} \mathbf{D} \mathbf{B}_{a i} d A \tag{5}\\
\mathbf{k}_{b n} & =\pi \int_{A} \mathbf{B}_{b i}^{T} \mathbf{D} B_{b i} d A \tag{6}
\end{align*}
$$

With strain matrices:

$$
\left.\begin{array}{l}
{\left[B_{a_{n} i}^{i}\right]=\left[\begin{array}{ccc}
\frac{\partial N_{i}}{\partial r} & 0 & 0 \\
0 & \frac{\partial N_{i}}{\partial z} & 0 \\
\frac{N_{i}}{r} & 0 & +\frac{n N_{i}}{r} \\
\frac{\partial N_{i}}{\partial z} & \frac{\partial N_{i}}{\partial r} & 0 \\
-\frac{n N_{i}}{r} & 0 & \left(\frac{\partial N_{i}}{\partial r}-\frac{N_{i}}{r}\right.
\end{array}\right)} \\
0 \\
{\left[B_{b_{n}}^{i}\right]}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{n N_{i}}{r} & \frac{\partial N_{i}}{\partial z}
\end{array}\right] .
$$

Figure 1: Strain matrices $\mathbf{B}_{a i}$ and $\mathbf{B}_{b i}$
The load vector must be also discretized taking into account the decomposition in equation (1) and shapefunctions N_{i}.

Our solution will be a function of θ, so we can calculate for any given (r, θ, z).

$2 \mathbf{B}^{e}$ matrix integration for thin beams

For thin beams, \mathbf{B}^{e} matrix is divided into the three \mathbf{B} matrices related to membrane, bending and shear.

$$
\mathbf{B}_{i}=\left[\begin{array}{c}
\mathbf{B}_{m} \tag{7}\\
\mathbf{B}_{b} \\
\mathbf{B}_{s}
\end{array}\right]
$$

In order to integrate them, and to avoid shear locking effects, reduced integration must be performed over the shear matrix. Also, and if some element have radial coordinate $\mathrm{r}=0$, Lobato's integration rule must be avoided, making use of full Gauss integration for the bending and membrane matrices.

