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1 Non axy-simmetric loads formulation

In order to correctly represent non-symmetric loads within a 2D formulation,
we can decompose loads and displacements into series of Fourier functions.

Loads can be described as
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And displacements (axial, radial and circumferencial respectively) as
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These will make the strain matrices depend on circumferencial variable θ.
Taking into account that Fourier series produce symmetric and non-symmetrix
solutions, the approximation functions can be divided into symmetric and non-
symmetric. The formulation of the stiffness matrices are (a for symmetric
n=0,2,4... and b for not symmetric n = 1,2,3...)
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With strain matrices:

Figure 1: Strain matrices Bai and Bbi

The load vector must be also discretized taking into account the decompo-
sition in equation (1) and shapefunctions Ni.

Our solution will be a function of θ, so we can calculate for any given (r, θ, z).
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2 Be matrix integration for thin beams

For thin beams, Be matrix is divided into the three B matrices related to
membrane, bending and shear.

Bi =

Bm

Bb

Bs

 (7)

In order to integrate them, and to avoid shear locking effects, reduced in-
tegration must be performed over the shear matrix. Also, and if some element
have radial coordinate r = 0, Lobato’s integration rule must be avoided, making
use of full Gauss integration for the bending and membrane matrices.
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