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Analyze the following concrete hyperbolic shell under self weight. Explain the
behavior of all the stresses presented.

In this assignemnt corresponding to the Shell lecture, we will analyze a hyperbolic concrete
shell under self weight. For this task, we will use the MatFEM code provided to solve the shell
finite element formulation. First of all, we create the geometry of the shell using GID.

Figure 0.1: Geometry definition of the shell using GiD.

The shell is assumed to be made of concrete with standard mechanical parameters provided
by GiD and thickness t = 0.1 m. Also, for this analysis, the following boundary conditions are
imposed:

• Displacement Constraints / Linear Constraints: The edges of the shell (the ones on the
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boundary) are completely clamped. Thus, we impose zero displacement are rotations. See
Figure 0.2 (a).

• Loads: No external loads are considered.

[ ] [ ]

Figure 0.2: (a) Displacement constraint definition in GiD and (b) Material parameters for the
analysis.

In the problem data window we need to check the self-weight box in order to ensure that
the self-weight of the structure is taking into account in the analysis. In fact, in this case it is
the only load considered.

Figure 0.3: Problem data definition in GiD.

Next step is to define the mesh for the simulation. The code provided uses the 3-noded
rriangular thick shell (RM) element. Let us now consider a mesh of triangular element with a
reference mesh size of 0.5. Then, we obtain the mesh in Figure 0.4. Finner meshes could be
considered for the analysis.
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Figure 0.4: Considered mesh for the calculation.

Now, the input file for the MATLAB solver can be generated and executed when running
the main file of the code Lamina_T_RM.m. After executing it, two more files are obtained, a
.msh and a .res files which contain the solution of our problem. Finaly, these files are viewed in
the GiD postprocess mode. The following figures, show the results obtained for the analysis.

Figure 0.5 down below, shows the deformation in the z direction. As we can see, displace-
ments in the boundary of the shell are exactly zero, and maximum displacement is achieved in
the middle part. Figure 0.6 shows just the deformed shell, for clarity.

Figure 0.5: Displacements in the z direction.
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Figure 0.6: Displacements in the z direction.

Figures 0.7, 0.9 and 0.11 show the membrane stresses Tx, Ty and Txy. This are obtained
uppon integration of the in-plane normal stresses σmx′ , σmy′ , and the in-plane shear stress τmx′y′ .
For the case of Tx, maximum values are achieved mainly at the corners of the hyperbolic shell
which are in the upper part while minimum values are appear in the lower corners. See Fig 0.8
for detail.

Figure 0.7: Result for the Tx stresses.

4



Figure 0.8: Result for the Tx stresses with the deformed shape of the shell.

Similar results are obtained for the membrane stress Ty. Now, note the analogy of the results
with the one obtained for Tx. Analogy in the sense that where we obtained maximun and min-
imum values for Tx, now we obtained similarly for Ty but somewhat transpose. Again, highest
(lowest) values are achieved in the corners.

Figure 0.9: Result for the Ty stresses.
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Figure 0.10: Result for the Ty stresses viewed in the deformed shape.

The case of the Txy membrane stresses is somewhat particular. Figure 0.11 mainly says
that, this stress vanish at the corner, where the contributions of bot Tx and Ty cancel, and it is
maximum in the center of the shell, where both contribution, let’s say, are added.

Figure 0.11: Result for the Txy stresses.

Now, let us present the result obtained for the bending stresses Mx, My and Mxy which
corresponde to the integration of the in-plane bending stresses. For the case of Mx, maximum
values are reached again at the boundaries of the shell, where the values of the local coordinate
x of the plot (see Figure down below) are minimum and maximum. Minimum values for this
rotation are achieved at the center of the shell, where rotations mainly vanish, as expected.
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Figure 0.12: Result for the Mx stresses.

Figure 0.13: Result for the Mx stresses viewed in the deformed shape.

The results for My follow the same explanation. In fact are the same as those for Mx but
rotated. See Figure 0.14.
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Figure 0.14: Result for the My stresses.

For the case of Mxy is interesting to note the complete symmetri with respect a diagonal of
the shell. Recall that the analyzed shell is in fact symmetric with symmetric load (self weight).

Figure 0.15: Result for the Mxy stresses.

Finally, we present in Figures 0.16 and 0.18 the transverse shear affect on the shell, Qx and
Qy. Within the framework of the Reissner-Midlin theory, these stresses are constant across the
thickness of the shell. The result for both is equivalent as one can see in the following figures.
The distribution is mainly uniform at the plate center and starts increasing as we reach the
boundaries. Higher values are reached at these points as they are clamped.
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Figure 0.16: Result for the Qx shear stresses.

Figure 0.17: Result for the Qx stresses viewed in the deformed shape.
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Figure 0.18: Result for the Qy shear stresses.
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