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1 Introduction

In order to adapt the supplied code, some changes were made
e Material parameters were changed to those given in the assignment

e A loop was included inside the main scripts to consider the eight different
cases (eight different area/length relationships)

e Timoshenko beam was changed

2 Beam results

Figures 1 to 9 show the maximum displacements, moments and shear force of
the different beams.

We can see that if we use the Euler-Bernoulli formulation, the results with re-
spect to forces (moments and shear forces) are practically the same, no matter
the relationship between area and length. This is due to the fact that this
formulation is valid for slender beams, and then, low values of logl0(Area/L).
As we do not take into account the effects of the shear forces, cross-section in-
ertia plays a weak role with respect to internal forces in this problem. Euler
displacements are relatively similar to the reduced integration scheme, as the
full integration methods suffers the so-called shear locking, overestimating the
effects of shear forces for thin beams (left half of the plots).

If we now compare the internal forces in both timoshenko formulations, we can
see again here the shear-locking effect in the Moment and Shear plots: for thin
beams, the Timoshenko full integration scheme shows really high values of Mx
and Shear Force.

The Timoshenko reduced integration beam captures the best of both formula-
tions: accounts for the shear effects but has good performance for thin beams



2.1 Euler beam plots
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Figure 1: Maximum displacements vs log10 (cross-section/beam length)
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Figure 2: Maximum Mx vs logl0 (cross-section/beam length)
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Figure 3: Maximum Shear vs logl0 (cross-section/beam length)

2.2 Timoshenko Full integrated beam plots
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Figure 4: Maximum displacements vs log10 (cross-section/beam length)
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Figure 5: Maximum Mx vs logl0 (cross-section/beam length)
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Figure 6: Maximum Shear vs logl0 (cross-section/beam length)



2.3 Timoshenko Reduced integrated beam plots
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Figure 7: Maximum displacements vs logl0 (cross-section/beam length)
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Figure 8: Maximum Mx vs logl0 (cross-section/beam length)
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Figure 9: Maximum Shear vs logl0 (cross-section/beam length)

3 Annex: Modified code

The Timoshenko Beam script was modified so it could include the reduced
integration scheme:

1.

Figure 10: fullint variable describes the method: 1 for Full Integration,
any other value for Reduced Integration

Figure 10 : (continuation) we include the different values of areas that we
are going to include, and their cross-section inertias

Figure 11 The shear matrix for the reduced integration is included

Figure 12 The integration points for the reduced integration scheme are
also included



% nodal loads.

file name = input ("Enter the file name :','s3"});
| fullint

1; % 0 for reduced intregration scheme l

tic; % Start clock

ttim = 0; % Initialize time counter
eval (file name):; % Read input file

areas = [0.001 0.005 0.010 0.020 0.050 0.1 0.2 0.47;
areas = areas.”2;

inertias = (areas."2)/12;

Results = zeros (4,8);
Besult=(1,:} = area=/4: % First row: relationship areas/length
[~ for o = 1:8
area = areasi(o);:

inercia = inertias(o):

% Finds basics dimentions

npnod = size (coordinates,l):; % Number of nodes

nelem = size(elements,l): % Number of elements

nnode = size(elements,2): % Number of nodes per element
nndof = npnod*2; % Humber of total DOF

Figure 10: First modification

if fullint

K shear = [ 1 . len/2 , -1 N lenf2 ;
len/2 , len™2/3 , -len/2 , len™2/& ;
-1 , =lens2 , 1 . =len/2 ;
len/2 , len™2/6 , -len/2 , 1len™2/3 ]:
else
K shear = [ 1 N len/2 , -1 N len/2 ;
len/2 , (len*2)/4 , -len/2 , (len™2)/4 ;
-1 , —len/2 , 1 , —len/2 ;
len/2 , (len"2)/4 , -lenf2 , (len™2)} /4 1;
end

Figure 11: Second modification



X ] = cooralnates(lnoas J); ¥ Llem. COOIQlnates
len = x j — x i

if fullint

gausl =-1/sqgrt(3);
gaus2 = 1/saqgrt(3):
clse

gausl
gaus2

a:
a:

el

end

bmat_f=[ 0, -1/len, 0, 1/len]:

bmat sl=[-1/len,-(l-gausl)/2, 1l/len,-(l+gausl)/2];
bmat_s2=[-1/len,-({l-gaus2)/2, 1lflen,-(l+gaus2)/2]:

S5tr(ielem,l) = dmatf* (bmat_f *transpose(u_elem)):
S5tr(ielem,2) dmats*® (bmat_ sl*transpose (u_slem));
S5tr(ielem, 3)

dmats*® (bmat_ sZ*transpose (u_slem));

Figure 12: Third modification



