UNIVERSITAT POLITÈCNICA DE CATALUNYA Master of Science in Computational Mechanics Computational Structural Mechanics and Dynamics CSMD Spring Semester 2017/2018

Assignment 6 - Euler-Bernoulli and Timoshenko Beam theories

Luan Malikoski Vieira

March 19, 2018

Assignment 6.1

For the first part of the assignment, two small changes in the code file named as *Beam_Timoshenko.m* were done to accomplish the following:

- Use a one gauss point integration rule for the K_s stiffness matrix of Timoshenko model, leading to the "reduced" Timoshenko model. The resultant code lines are shown in Figure (1) (a).
- Use only one gauss point to evaluate the stresses in the reduced Timoshenko model. This results in the code lines of Figure (1) (b).

		154	SONE GAUSS POINT FOR STRESS EVALUATION
		155 -	gaus1 = 0;
		156	
65	<pre>%REDUCED (ONE GAUSS POINT FOR Ks INTEGRATION)</pre>	157 -	<pre>bmat_f=[0, -1/len, 0, 1/len];</pre>
66 -	K_shear = [1 , len/2 , -1 , len/2 ;	158 -	<pre>bmat sl=[-1/len,-(1-gaus1)/2, 1/len,-(1+gaus1)/2];</pre>
67	<pre>len/2 , len^2/4 , -len/2 , len^2/4 ;</pre>	159	
68	-1 , -len/2 , 1 , -len/2 ;	160 -	<pre>Str(ielem, 1) = dmatf*(bmat_f *transpose(u_elem));</pre>
69	<pre>len/2 , len^2/4 , -len/2 , len^2/4];</pre>	161 -	<pre>Str(ielem,2) = dmats*(bmat_sl*transpose(u_elem));</pre>
	(\mathbf{a})		$(\mathbf{l}_{\mathbf{b}})$
	(a)		(D)

Assignment 6.2

For the second part of the assignment the matlab code file named as $SimpleSupUL_Beam_64.m$ had the changes in the *Material Properties* section as shown in Figure (2).

```
2
          Material Properties
        $
3
4
         young
                   21000 ;
                 =
5
                   0.25
         poiss
                         ;
6
7 -
                   а
                      2:
8
                   (1/12)*a^4:
9
                   1.000000000 ;
         denss
```

Figure 2: Physical and Geometrical properties.

After this changes the three beam models defined as follows: Euler-Bernounolli (E-B), Timoshenko (T) and Timoshenko Reduced (T-R), were tested for the given geometrical/load given case. The cases were run for different values of the relation a/L, where a is the cross section height and width, and L the beam length (4 m in this problem).

Figure 3 (a) and (b) shows the results for Maximum angular deformation θ and displacement in y direction w respectively for the three models (E-B, T and T-R) with respect to the relation a/L.

Figure 3: Maximum: (a) Angular displacement θ ; (b) displacement w; (c) Bending Moment; (d) Shear Force.

It can be noticed that the T model underestimate the magnitude of the maximum angular deformation θ and maximum displacement w, with respect to E-B model results, when the relation a/L is small. This is a expected result due to the shear locking effect that provides a stiffer element model when L/a is too high,

or in other words, when the beam is slender.

The reduced Timoshenko model (T-R) is employed to overcome this limitation, and in can be noticed in Figure (3) (a) and (b) that over all considered range of a/L, the results for θ and w agrees with the E-B model results. It can be also noticed that, for this given case, when a/L > 0.025 the three models presents almost same results for θ and w.

Results for internal Bending Moment and Shear forces are given in Figure (3) (c) and (d) respectively. For the maximum Bending Moment, Figure (3) (c), both models E-B and T-R predict the same value in the whole range of a/L, meanwhile, the T model only converges to almost the same results when $a/L \ge 0.1$.

With regard to Maximum Shear Force, Figure (3) (d), two options for the evaluation of the shear forces in the T model were tested. First one, as a natural procedure, using two gauss points ($\xi_1 = -1/\sqrt{3}$ and $\xi_2 = 1/\sqrt{3}$) for the B_s matrix evaluation, named here as T simply. Second one using only one gauss points for the B_s matrix evaluation ($\xi_1 = 0$, center of element), named here as T-1. Both Timoshenko reduced (T-R) and Timoshenko with one gauss point for stress computation (T-1) accounts for the same value of shear force ($Q \approx 2[N]$) in the whole range of a/L. However, the Timoshenko with 2 gauss points (T) shows a over prediction of shear forces for (a/L < 0.1).

These results shows that the Timoshenko (T) solution for shear forces, being a linear function of ξ , provides a high variation within the element for low values of a/L. Further, as the T-1 solution for Shear forces agrees with T-R solution, it can be said that the T solution for Shear forces in the middle of the element is the same as the T-R solution. When a/L > 0.1, for this case, both evaluation with one and two gauss points (T-1 and T) provides same result for Shear forces, as here locking effects are diminished and low variation of shear forces within the element is obtained for T model. Again this is a result of the Shear locking effect, were the Shear effects dominates the Timoshenko (T) solution for small values of a/L which is not reasonable for slender beams under the physical point of view.