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Assignment 6.1
Program in MATLAB the Timoshenko 2-Nodes beam element with reduce integration for the shear stiffness
matrix.

Assignment 6.2
Solve the following problem with a 64 element mesh with the:

• 2 nodes Bernoulli element;

• 2 nodes Timoshenko full integration element;

• 2 nodes Timoshenko reduced integration element.

Compare the maximum displacements, moments and shear for the 3 elements against the a/L relationship.
With a = [0.001, 0.005, 0.010, 0.020, 0.050, 0.100, 0.200, 0.400].
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1 Assignment 6.1
Using the formulation from MATFEM, a matrix from Beam_Timoshenko_v1_3.m was updated to perform the
reduced integration Timoshenko beam element. The matrix used is shown below, and in the Appendix A.1 the
complete code can be seen.

KS = G ·A∗
l

(e)
·


1 l(e)/2 −1 l(e)/2

(l(e))2/2 −l(e)/2 (l(e))2/4
1 −l(e)/2

(l(e))2/4



2 Assignment 6.2
To represent the conditions for this problem, GiD software was used to set the loads, constraints, sections and
material properties, as well as the mesh for it.
Once the first set of conditions was established, MAT-FEM module in GiD allows to generate an input file for
analyzing the beam using MATLAB. Once this file was generated, the analysis was performed for the different
types of descriptions namely Bernoulli, Timoshenko with full integration and Timoshenko with reduced integration.
The element length is set to L(e) = 4.0m/64 = 0.0625m then, when changing the value of both width and height
(a parameter), the aspect ratio ar = a/L varies. Using this parameter, the absolute values of displacement, shear
force and bending moment were plotted.
The input file generated with the help of GiD was modified manually as the only property modified was the
area and the intertia for the different sections. Then these files were analyzed with MATLAB. In Table 1 the
eight models to be analyzed with the three beam description Bernoulli, Timoshenko with full integration and
Timoshenko with reduced integration are presented.
The bending moment and shear forces registered in each of the beam descriptions are presented in Figure 1a and
Figure 1b respectively. The displacements can be seen in Figure 2.
From the plots it is easy to notice that the three methods for all the aspect ratios registered:

• shear forces are in complete agreement with the theory of beams (Q = q · L/2 = 2.00 N), as the maximum
error is below 2% for both Timoshenko with full integration and Timoshenko with reduced integration, and
for Bernoulli the shear registered is exact.

• bending moments registered important errors in the Timoshenko with full integration the parameter β =
4Gα/E ·λ2, where α is a shape factor related to the shear stresses, G, E are material parameters and λ is the
inverse of the aspect ratio a/L(e), tend to infinite and shear blocking occurred for this kind of element and
bending moment tend to zero. It is important to notice that λ varied from 62.5 to 0.16 and errors varying
from 99.9% to 2%. For a λ = 0.31 the error is bigger than 10%, therefore this formulation does not seem to
be reliable. In the case of Bernoulli and Timoshenko with reduced integration the error below 0.1% for every
aspect ratio or λ. For aspect ratio above 3, the bending moment error is below 10%.

• theoretically displacements in a simply supported beam are ω = (5 · P · L4)/(384 · EI), this means that
for every value of a different displacement are to be expected. To this end Figure 3 is introduced, and
as it can be seen, Timoshenko with full integration description has an error of approximately 100% in the
displacement prediction which is reduced to approximately 5% when the aspect ratio is around 2. In the
case of Timoshenko with reduced integration and Bernoulli the error is approximately constant equal to 5%,
which is acceptable.
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Model a [m] a/L(e) A [m2] I [m4]
1 0.001 1.60 10−02 1.00 10−06 8.33 10−14

2 0.005 8.00 10−02 2.50 10−05 5.21 10−11

3 0.010 1.60 10−01 1.00 10−04 8.33 10−10

4 0.020 3.20 10−01 4.00 10−04 1.33 10−08

5 0.050 8.00 10−01 2.50 10−03 5.21 10−07

6 0.100 1.60 1.00 10−02 8.33 10−06

7 0.200 3.20 4.00 10−02 1.33 10−04

8 0.400 6.40 1.60 10−01 2.13 10−03

Table 1: Each of the models to be analysed.

(a) Maximum absolute values: Bending moments
(b) Maximum absolute values: Shear force

Figure 1: Bending moments and shear force for all the models with the three beam element descriptions.

Figure 2: Maximum absolute value of registered displacements for all the models with the three beam element
descriptions.

3



Homework 6 - Beams designment Mariano Tomás Fernandez

Figure 3: Percentual error between the maximum absolute value of registered displacements for all the models
with the three beam element descriptions, compared to the theoretically correct maximum absolute displacement.

3 Conclusions
Eight different geometric sections were analyzed in the same beam designment using three different beam element
description, namely Bernoulli, Timoshenko with full integration and Timoshenko with reduced integration. This
last element beam description was added modifying a MAT-FEM file to correctly represent it. The results
shown that both Bernoulli and Timoshenko with reduced integration represented correctly the stress, reaction
forces and displacements in beams for most of the different sections and their slenderness (aspect ration). In the
case of Timoshenko with full integration the results are not in agreement with the theory for aspect ratios below
approximately 3 considering both displacement and bending moment, therefore this description is not reliable
because of it mesh dependency.
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A Appendix

A.1 Reduced integration Timoshenko - Code
1 %% MAT - fem_Beams
2 % 2 Nodes Beam using Timoshenko Theory
3

4 % Clear memory and variables
5 clear
6

7 % The variables are read as a MAT -fem subroutine
8 % young = Young Modulus
9 % poiss = Poission Ratio

10 % denss = Material density
11 % area = Cross section area
12 % inertia = Cross section inertia
13 % coordinates = [ x ] matrix size: nnode x ndime (1)
14 % elements = [ inode , jnode ] element connectivity matrix .
15 % Matrix size: nelem x nnode ; nnode = 2
16 % fixnodes = [ node number , dof , fixed value ] matrix with
17 % Dirichlet restrictions , were dof =1 for vertical
18 % displacement and dof =2 for vertical derivative
19 % pointload = [ node number , dof , load value ] matrix with
20 % nodal loads , were dof =1 for vertical load
21 % and dof =2 for moment
22 % uniload = [ uniform vertical load ] sparse matrix size: nelem x 1
23

24 file_name = input (’Enter the file name: ’,’s’);
25

26 tic; % Start clock
27 ttim = 0; % Initialize time counter
28 eval( file_name ); % Read input file
29

30 % Find basic dimensions
31 npnod = size( coordinates ,1); % Number of nodes
32 nelem = size(elements ,1); % Number of elements
33 nnode = size(elements ,2); % Number of nodes por element
34 dofpn = 2; % Number of DOF per node
35 dofpe = nnode * dofpn ; % Number of DOF per element
36 nndof = npnod * dofpn ; % Number of total DOF
37

38 ttim = timing (’Time needed to read the input file ’,ttim); % Reporting time
39

40 % Dimension the global matrices
41 StifMat = sparse ( nndof , nndof ); % Create the global stiffness matrix
42 force = sparse ( nndof , 1 ); % Create the global force vector
43 force1 = sparse ( nndof , 1 ); % Create the global force vector
44 reaction = sparse ( nndof , 1 ); % Create the global reaction vector
45 u = sparse ( nndof , 1 ); % Nodal variables
46

47 % Material properties ( Constant over the domain )
48 D_matb = young * inertia ;
49 D_mats = young /(2*(1+ poiss ))*area *5/6;
50

51 ttim = timing (’Time needed to set initial values ’,ttim); % Reporting time
52

53 % Element cycle
54 for ielem = 1 : nelem
55

56 lnods (1: nnode ) = elements (ielem ,1: nnode );
57

58 coor_x (1: nnode ) = coordinates ( lnods (1: nnode ) ,1); % Elem. X coordinate
59

60 len = coor_x (2) - coor_x (1); % x_j > x_i
61

62 const = D_matb /len;
63

64 K_b = [ 0 , 0 , 0 , 0 ;
65 0 , 1 , 0 , -1 ;
66 0 , 0 , 0 , 0 ;
67 0 , -1 , 0 , 1 ];

5



Homework 6 - Beams designment Mariano Tomás Fernandez

68

69 K_b = K_b * const ;
70

71 const = D_mats /len;
72

73 K_s = [ 1 , len /2 , -1 , len /2 ;
74 len /2 , len ^2/4 , -len /2 , len ^2/4 ;
75 -1 , -len /2 , 1 , -len /2 ;
76 len /2 , len ^2/4 , -len /2 , len ^2/4 ];
77

78 K_s = K_s * const ;
79

80 K_elem = K_b + K_s;
81

82 f = (- denss *area + uniload ( ielem ))*len /2;
83 ElemFor = [ f, 0, f, 0];
84

85 % Find the equation number list for the i-th element
86 for i = 1 : nnode
87 ii = (i -1)* dofpn ;
88 for j = 1 : dofpn
89 eqnum (ii+j) = ( lnods (i) -1)* dofpn + j; % Build the eq. number list
90 end
91 end
92

93 % Assemble the force vector and the stiffness matrix
94 for i = 1 : dofpe
95 ipos = eqnum (i);
96 force (ipos) = force (ipos) + ElemFor (i);
97 for j = 1 : dofpe
98 jpos = eqnum (j);
99 StifMat (ipos ,jpos) = StifMat (ipos ,jpos) + K_elem (i,j);

100 end
101 end
102

103 end % End element cycle
104

105 ttim = timing (’Time to assemble the global system ’,ttim); % Reporting time
106

107 % Add point load conditions to the force vector
108 for i = 1 : size(pointload ,1)
109 ieqn = ( pointload (i ,1) -1)* dofpn + pointload (i ,2); % Find eq. number
110 force (ieqn) = force (ieqn) + pointload (i ,3); % and add the force
111 end
112

113 ttim = timing (’Time for apply side and point load ’,ttim); % Reporting time
114

115 % Apply the Dirichlet conditions and adjust the right hand side
116 for i = 1 : size(fixnodes ,1)
117 ieqn = ( fixnodes (i ,1) -1)* dofpn + fixnodes (i ,2); % Find equation number
118 u(ieqn) = fixnodes (i ,3); % and store the solution in u
119 fix(i) = ieqn; % and mark the eq. as a fix value
120 end
121

122 force1 = force - StifMat * u; % Adjust the rhs with the known values
123

124 % Compute the solution by solving StifMat * u = force for the remaining
125 % unknown values of u
126 FreeNodes = setdiff ( 1: nndof , fix ); % Find the free node list
127 % and solve for it
128 u( FreeNodes ) = StifMat (FreeNodes , FreeNodes ) \ force1 ( FreeNodes );
129

130 ttim = timing (’Time to solve the stiffness matrix ’,ttim); % Reporting time
131

132 % Compute the reactions on the fixed nodes as R = StifMat * u - F
133 reaction (fix) = StifMat (fix ,1: nndof ) * u(1: nndof ) - force (fix);
134

135 ttim = timing (’Time to solve the nodal reactions ’,ttim); % Reporting time
136

137 % Compute the stresses
138 Strnod = Stress_Beam_Timoshenko_v1_3 (D_matb ,D_mats ,u);

6



Homework 6 - Beams designment Mariano Tomás Fernandez

139

140 ttim = timing (’Time to solve the nodal stresses ’,ttim); % Reporting time
141

142 % Graphic representation
143 ToGiD_Beam_Timoshenko_v1_3 (file_name ,u,reaction , Strnod );
144

145 ttim = timing (’Time used to write the solution ’,ttim); % Reporting time
146 itim = toc; % Close last tic
147 fprintf (1,’\ nTotal running time %12.6 f \n\n’,ttim); % Reporting final time
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