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Background:

Timoshenko beam theory accounts for the effect of transverse shear deformation. Timoshenko
beam elements require C° continuity for the deflection and rotation fields and, therefore, are
simpler than Euler-Bernoulli beam elements. Unfortunately, they suffer generally from the so-
called shear locking defect which yields unrealistically stiffer solutions for slender beams. The

effect of transverse shear deformation is negligible for a slender beam (i.e. for a large value of
the slenderness ratio A = % = % = Length/Thichness). Hence, Timoshenko solution should
coincide for this case with that of conventional Euler-Bernoulli theory. But it has been observed
that as the beam slenderness increases the numerical solution is progressively stiffer than the
exact one. This means that the 2-noded Timoshenko beam element is unable to reproduce the
conventional solution for slender beams. Many procedures to eliminate shear locking in
Timoshenko beam elements have been proposed. A popular method is to reduce the influence
of the transverse shear stiffness by under-integrating the terms in K;°using a quadrature of one
order less than is needed for exact integration (the so-called reduced integration). The terms of
K, ¢ are still integrated exactly. The reduced integration method is valid for both thick and

slender beams.

(A) The basic goal is to implement the reduced integration algorithm in the provided code
in order to avoid the shear locking effect associate with the Timoshenko beam theory. The
algorithm has been successfully implemented and the code has been modified. The modified
code is presented in the Annex. The correctness of the implementation have been verified
for the case of the cantilever beam under end point load. It has been observed that the end
deflection ratio of the reduced integration model and the Euler Bernoulli beam theory model
converges rapidly to one for (A—) as the mesh is refined. The exact quadrature leads to
shear locking, whereas the reduced one point quadrature successfully overcomes the shear

locking effect.
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(B) Goal: - The goal is to solve the given problem with a 64 element mesh with the (a) 2

nodes Euler Bernoulli element, (b) 2 nodes Timoshenko Full Integrate element, (c) 2 nodes

Timoshenko Reduce Integration element. We need to Compare maximum displacements,

moments and shear for the 3 elements against a/L relationship.
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Figure 1: The given beam element under uniformly distributed loading
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Case a a/lL A=L/a Inertia (l):tlz_z

1 0.001 0.00025 4000 8.333 e-14

2 0.005 0.00125 800 52.08333 e-12

3 0.01 0.0025 400 8.3333 e-10

4 0.02 0.005 200 13333 e-8

5 0.05 0.0125 80 52.08333 e-8

6 0.1 0.025 40 8.3333e-6

7 0.2 0.05 20 1.3333 e-4

8 0.4 0.1 10 21.3333 e-4

9 4 1 1 21.33333

P=1; y = 0.25; E=21000; L=4m
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() Maximum Displacement Comparison:-

a/L Euler Bernoulli | Timoshenko Reduced Integration
0.00025 -1.90E+09 -1.46E+06 -1.90E+09
0.00125 -3.05E+06 -57401 -3.05E+06
0.0025 -1.90E+05 -13583 -1.90E+05

0.005 -8658 -2570.8 -8655.3
0.0125 -304.76 -200.43 -304.76
0.025 -19.048 -16.875 -19.069
0.05 -0.8658 -0.85259 -0.87261
0.1 -0.074405 -0.075561 -0.076161
1 -7.44E-06 -2.53E-05 -2.53E-05

Normalized maximum displacement with respect to the Euler Bernoulli Theory:

a/ L UMax,EB UMax,Timoshenko UMax,Reduced Int.
UmaxEs Umax,B UmaxEB
0.00025 1 7.69E-04 1.00E+00
0.00125 1 1.88E-02 1.00E+00
0.0025 1 7.14E-02 1.00E+00
0.005 1 2.97E-01 1.00E+00
0.0125 1 6.58E-01 1.00E+00
0.025 1 8.85E-01 1.00E+00
0.05 1 9.80E-01 1.01E+00
0.1 1 1.02E+00 1.02E+00
1 1 3.40E+00 3.40E+00

CSDM

The obtained normalized maximum displacement values have been plotted versus a/L values
in the Figure 2. It can be clearly observed that for slender beams Timoshenko solution does
not coincide with that of the conventional Euler-Bernoulli theory. As the effect of transverse
shear deformation is negligible for a slender beam (i.e. for a large value of the slenderness ratio
A=L/h=L/a=Length/Thickness), the Timoshenko solution is not able to depict this
characteristics which displays the shear locking effect. On the other hand it can be lucidly
observed that for slender beams the reduced integration method is able to overcome the shear
locking effect. It exactly produces the results as obtained using the Euler-Bernoulli thin beam
theory. For thick/stocky beams, Timoshenko beam is physically more realistic because it
includes the shear deformations. It can be investigated from the attached figure that for thick
beams, the solutions obtained using the reduced integration method and the Timoshenko beam
theory are similar. The application of the EB theory is usually restricted to situations where
dimensions along the axis of the beam are at least ten times those of the transverse (cross-
section) dimensions: a/ L < 1/10. In contrast to the EB theory, the Timoshenko theory includes
transverse shear deformations and is applicable when the length to thickness ratio is lower.
However for 0.05< a/L< 0.1, all the theories give similar results for the maximum displacement.
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Figure 2: Normalized displacement vs. a/L ratio
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Figure 3: Maximum Displacement vs. a/L ratio
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Figure 4: Maximum rotation vs. a/ L

(b) Maximum Moment Comparison:-

a/L Euler Bernoulli | Timoshenko Reduced Integration
0.00025 1.9999 0.0015341 1.999
0.00125 1.9999 0.037658 1.999
0.0025 1.9999 0.14257 1.999

0.005 1.9999 0.59364 1.999
0.0125 1.9999 1.3144 1.999
0.025 1.9999 1.7687 1.999
0.05 1.9999 1.9528 1.999
0.1 1.9999 1.9829 1.999

1 1.9999 1.9989 1.999

The obtained maximum moment values have been plotted versus a/L values in the Figure
5. It can be observed that for thick beams Timoshenko beam elements provide similar
results as that of the results obtained from the reduced integration theory. Timoshenko
beam element with reduced integration is valid for both thick and slender beams.
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Moment vs a/L
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Figure 5: Moment vs. a/L ratio

(c) Maximum Shear force Comparison:-

The effect of transverse shear deformation is negligible for a slender beam. So, the Euler
Bernoulli theory does not provide any information about the shear force. The obtained shear
forces for both the Timoshenko and the reduced integration theory have been plotted below.
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Figure: 6: Shear force vs. a/L ratio
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Conclusion:

We conclude that the one point reduced quadrature for K, yields a 2-noded Timoshenko beam
element which is called reduced integration element, which is valid for both thick and slender
beams. Once the nodal displacements have been obtained, the bending moment and the shear
force are computed at the element mid-point which is “optimal” for the evaluation of stresses.
For thick beams the Timoshenko beam element is more realistic than the Euler Bernoulli
element as it includes transverse shear deformations.

Annex:-

Modifications to K.° :

Element cycle

for ielem = 1 : nelem
lnods (1:nnode) = elements(ielem,1l:nnode);
coor x(l:nnode) = coordinates (lnods(l:nnode),1):; % Elem. X coordinate
len = coor x(2) - coor x(1); $ x J>x 1
const = D matb/len;
Kb=[0, 0, 0, 03
O, 1, 01_17
o0, o0, o, 0 ;
o, -1, 0, 11;

Kb =K b * const;

const = D mats/len;

K s = | 1 , len/2 , -1 , len/2 ;
len/2 , len™2/4 , -len/2 , len”2/4 ;
-1 , -len/2 , 1 , -len/2 ;

len/2 , len™2/4 , -len/2 , len”2/4 ];
K s = K s * const;

K elem = K b + K s;

f = (-denss*area + uniload(ielem)) *len/2;
ElemFor = [ £, 0, £, 01;
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Stress Evaluation:-

% One gauss point for stress evaluation
gausl =0;
gaus2 = 0; % One Gauss point for stresses evaluation

bmat f=[ 0, -1/len, 0, 1/len];
bmat sl=[-1/len,-(l-gausl)/2, 1/len,-(l+gausl)/2];
bmat s2=[-1/len,-(l-gaus2)/2, 1/len,-(lt+gaus2)/2];

Strl g0 = D matb* (bmat f *transpose(u elem))

m)

Str2 g0 = D mats* (bmat sl*transpose(u elem));

Str3 g0 = D mats* (bmat sZ*transpose(u_elem))
Strnod(lnods(1l),1) = Strnod(lnods(1l),1)+Strl g0;
Strnod(lnods(2),1) = Strnod(lnods(2),1)+Strl g0;
Strnod(lnods(1l),2) = Strnod(lnods(l),2)+Str2 g0;
Strnod(lnods (2),2) = Strnod(lnods(Z),2)+Str3 g0y
Strnod(lnods(1l),3) = Strnod(lnods(1l),3)+
Strnod(lnods (2),3) = Strnod(lnods(2),3)+

end

for i = 1 : npnod

Strnod(i,1) = Strnod(i,1l)/Strnod(i,3);

Strnod (i, 2) Strnod(i,2)/Strnod (i, 3);

end

End
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