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Background:  

Timoshenko beam theory accounts for the effect of transverse shear deformation. Timoshenko 

beam elements require C0 continuity for the deflection and rotation fields and, therefore, are 

simpler than Euler-Bernoulli beam elements. Unfortunately, they suffer generally from the so-

called shear locking defect which yields unrealistically stiffer solutions for slender beams. The 

effect of transverse shear deformation is negligible for a slender beam (i.e. for a large value of 

the slenderness ratio 𝜆 =
𝐿

ℎ
=

𝐿

𝑎
= 𝐿𝑒𝑛𝑔𝑡ℎ/𝑇ℎ𝑖𝑐ℎ𝑛𝑒𝑠𝑠). Hence, Timoshenko solution should 

coincide for this case with that of conventional Euler-Bernoulli theory. But it has been observed 

that as the beam slenderness increases the numerical solution is progressively stiffer than the 

exact one. This means that the 2-noded Timoshenko beam element is unable to reproduce the 

conventional solution for slender beams. Many procedures to eliminate shear locking in 

Timoshenko beam elements have been proposed. A popular method is to reduce the influence 

of the transverse shear stiffness by under-integrating the terms in 𝐾𝑠
𝑒using a quadrature of one 

order less than is needed for exact integration (the so-called reduced integration). The terms of 

𝐾𝑏
𝑒 are still integrated exactly. The reduced integration method is valid for both thick and 

slender beams. 

(A)  The basic goal is to implement the reduced integration algorithm in the provided code 

in order to avoid the shear locking effect associate with the Timoshenko beam theory. The 

algorithm has been successfully implemented and the code has been modified. The modified 

code is presented in the Annex. The correctness of the implementation have been verified 

for the case of the cantilever beam under end point load. It has been observed that the end 

deflection ratio of the reduced integration model and the Euler Bernoulli beam theory model 

converges rapidly to one for (λ→∞) as the mesh is refined. The exact quadrature leads to 

shear locking, whereas the reduced one point quadrature successfully overcomes the shear 

locking effect.  
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 (B)  Goal: - The goal is to solve the given problem with a 64 element mesh with the (a) 2 

nodes Euler Bernoulli element, (b) 2 nodes Timoshenko Full Integrate element, (c) 2 nodes 

Timoshenko Reduce Integration element. We need to Compare maximum displacements, 

moments and shear for the 3 elements against a/L relationship.  

 

Figure 1: The given beam element under uniformly distributed loading 

 

Case a a/L 𝝀 = 𝑳/𝒂 Inertia (I)=
𝒂𝟒

𝟏𝟐
 

1 0.001 0.00025 4000 8.333 e-14 

2 0.005 0.00125 800 52.08333 e-12 

3 0.01 0.0025 400 8.3333 e-10 

4 0.02 0.005 200 1.3333 e-8 

5 0.05 0.0125 80 52.08333 e-8 

6 0.1 0.025 40 8.3333 e-6 

7 0.2 0.05 20 1.3333 e-4 

8 0.4 0.1 10 21.3333 e-4 

9 4 1 1 21.33333 

 

P=1;   𝛾 = 0.25 ; E= 21000; L= 4m 
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(a) Maximum Displacement Comparison:- 

a/L Euler Bernoulli  Timoshenko Reduced Integration 

0.00025 -1.90E+09 -1.46E+06 -1.90E+09 

0.00125 -3.05E+06 -57401 -3.05E+06 

0.0025 -1.90E+05 -13583 -1.90E+05 

0.005 -8658 -2570.8 -8655.3 

0.0125 -304.76 -200.43 -304.76 

0.025 -19.048 -16.875 -19.069 

0.05 -0.8658 -0.85259 -0.87261 

0.1 -0.074405 -0.075561 -0.076161 

1 -7.44E-06 -2.53E-05 -2.53E-05 

 

Normalized maximum displacement with respect to the Euler Bernoulli Theory:  

a/L 𝑼𝑴𝒂𝒙,𝑬𝑩

𝑼𝑴𝒂𝒙,𝑬𝑩
 

𝑼𝑴𝒂𝒙,𝑻𝒊𝒎𝒐𝒔𝒉𝒆𝒏𝒌𝒐

𝑼𝑴𝒂𝒙,𝑬𝑩
 

𝑼𝑴𝒂𝒙,𝑹𝒆𝒅𝒖𝒄𝒆𝒅 𝑰𝒏𝒕.

𝑼𝑴𝒂𝒙,𝑬𝑩
 

0.00025 1 7.69E-04 1.00E+00 

0.00125 1 1.88E-02 1.00E+00 

0.0025 1 7.14E-02 1.00E+00 

0.005 1 2.97E-01 1.00E+00 

0.0125 1 6.58E-01 1.00E+00 

0.025 1 8.85E-01 1.00E+00 

0.05 1 9.80E-01 1.01E+00 

0.1 1 1.02E+00 1.02E+00 

1 1 3.40E+00 3.40E+00 

 

The obtained normalized maximum displacement values have been plotted versus a/L values 

in the Figure 2. It can be clearly observed that for slender beams Timoshenko solution does 

not coincide with that of the conventional Euler-Bernoulli theory. As the effect of transverse 

shear deformation is negligible for a slender beam (i.e. for a large value of the slenderness ratio 

λ=L/h=L/a=Length/Thickness), the Timoshenko solution is not able to depict this 

characteristics which displays the shear locking effect. On the other hand it can be lucidly 

observed that for slender beams the reduced integration method is able to overcome the shear 

locking effect. It exactly produces the results as obtained using the Euler-Bernoulli thin beam 

theory. For thick/stocky beams, Timoshenko beam is physically more realistic because it 

includes the shear deformations. It can be investigated from the attached figure that for thick 

beams, the solutions obtained using the reduced integration method and the Timoshenko beam 

theory are similar.  The application of the EB theory is usually restricted to situations where 

dimensions along the axis of the beam are at least ten times those of the transverse (cross-

section) dimensions: a/ L < 1/10. In contrast to the EB theory, the Timoshenko theory includes 

transverse shear deformations and is applicable when the length to thickness ratio is lower. 

However for 0.05< a/L< 0.1, all the theories give similar results for the maximum displacement.  
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Figure 2:  Normalized displacement vs. a/L ratio 

. 

 

Figure 3:  Maximum Displacement vs. a/L ratio 
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                            Figure 4: Maximum rotation vs. a/ L 

(b) Maximum Moment Comparison:- 

a/L Euler Bernoulli  Timoshenko Reduced Integration 

0.00025 1.9999 0.0015341 1.999 

0.00125 1.9999 0.037658 1.999 

0.0025 1.9999 0.14257 1.999 

0.005 1.9999 0.59364 1.999 

0.0125 1.9999 1.3144 1.999 

0.025 1.9999 1.7687 1.999 

0.05 1.9999 1.9528 1.999 

0.1 1.9999 1.9829 1.999 

1 1.9999 1.9989 1.999 

 

The obtained maximum moment values have been plotted versus a/L values in the Figure 

5. It can be observed that for thick beams Timoshenko beam elements provide similar 

results as that of the results obtained from the reduced integration theory. Timoshenko 

beam element with reduced integration is valid for both thick and slender beams. 
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Figure 5: Moment vs. a/L ratio 

(c) Maximum Shear force Comparison:- 

The effect of transverse shear deformation is negligible for a slender beam. So, the Euler 

Bernoulli theory does not provide any information about the shear force. The obtained shear 

forces for both the Timoshenko and the reduced integration theory have been plotted below.  

   

Figure: 6: Shear force vs. a/L ratio 
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Conclusion:  

We conclude that the one point reduced quadrature for 𝐾𝑠 yields a 2-noded Timoshenko beam 

element which is called reduced integration element, which is valid for both thick and slender 

beams. Once the nodal displacements have been obtained, the bending moment and the shear 

force are computed at the element mid-point which is “optimal” for the evaluation of stresses.  

For thick beams the Timoshenko beam element is more realistic than the Euler Bernoulli 

element as it includes transverse shear deformations.  

 

Annex:-  

Modifications to 𝐾𝑠
𝑒 :  

Element cycle 
  for ielem = 1 : nelem 

       
    lnods(1:nnode) = elements(ielem,1:nnode); 

  
    coor_x(1:nnode) = coordinates(lnods(1:nnode),1);   % Elem. X coordinate 

  
    len = coor_x(2) - coor_x(1);  % x_j > x_i 

     
    const = D_matb/len; 

     
    K_b = [ 0 ,  0 ,  0 ,  0 ;       
            0 ,  1 ,  0 , -1 ; 
            0 ,  0 ,  0 ,  0 ; 
            0 , -1 ,  0 ,  1 ]; 

             
    K_b = K_b * const; 

       
    const = D_mats/len; 

     
    K_s = [   1   ,   len/2 ,   -1   ,   len/2 ; 
            len/2 , len^2/4 , -len/2 , len^2/4 ; 
             -1   ,  -len/2 ,    1   ,  -len/2 ; 
            len/2 , len^2/4 , -len/2 , len^2/4 ]; 

             
    K_s = K_s * const; 

             
    K_elem = K_b + K_s; 

         
    f       = (-denss*area + uniload(ielem))*len/2; 
    ElemFor = [ f, 0, f, 0]; 
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Stress Evaluation:-  

% One gauss point for stress evaluation 
    gaus1 =0; 
    gaus2 = 0;    % One Gauss point for stresses evaluation 

  
    bmat_f=[ 0, -1/len, 0, 1/len]; 
bmat_s1=[-1/len,-(1-gaus1)/2, 1/len,-(1+gaus1)/2]; 
bmat_s2=[-1/len,-(1-gaus2)/2, 1/len,-(1+gaus2)/2]; 

  
 Str1_g0 = D_matb*(bmat_f *transpose(u_elem)); 
Str2_g0 = D_mats*(bmat_s1*transpose(u_elem)); 
Str3_g0 = D_mats*(bmat_s2*transpose(u_elem)); 
    Strnod(lnods(1),1) = Strnod(lnods(1),1)+Str1_g0; 
    Strnod(lnods(2),1) = Strnod(lnods(2),1)+Str1_g0; 
    Strnod(lnods(1),2) = Strnod(lnods(1),2)+Str2_g0; 
    Strnod(lnods(2),2) = Strnod(lnods(2),2)+Str3_g0; 
    Strnod(lnods(1),3) = Strnod(lnods(1),3)+1; 
    Strnod(lnods(2),3) = Strnod(lnods(2),3)+1; 

     
  end 
for i = 1 : npnod 
    Strnod(i,1) = Strnod(i,1)/Strnod(i,3); 
    Strnod(i,2) = Strnod(i,2)/Strnod(i,3); 
  end 

 

 

 

End 


