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a) Program in MatLab the Timoshenko 2 Nodes Beam element with reduce inte-
gration for the shear stiffness matrix

In this assignment related with Euler-Bernoulli and Timoshenko beam theories, we are asked
to solve a simple supported beam considering a uniformly distributed load acting on it with
a mesh of 64 elements. We are given the fully implemented codes for the Euler-Bernoulli and
Timoshenko cases, and it just remains to include the reduced integration Timoshenko algorithm,
which is usually implemented as a way to overcome the so-called shear locking effect. This
reduced integration technique computes the matrix K
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s using a quadrature of one order less

than is needed for exact integration. The matrix is
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Then, we can just change the code provided for the Timoshenko case,

Figure 0.1: Definition of the K
(e)
s matrix for the case of reduced integration in the Timoshenko

code.

As we can see, we have just included the definition of the matrix for the reduced integration
case and comment the matrix of the full integration case, so that a user can choose if he/she
wants to use one type of analysis or the other. Also, for stress evaluation we have set the
parameters gaus1 and gaus2 equal to zero in order to have a consistent formulation with the
reduced integration technique.

b) Solve the following problem with a 64 element mesh with the 2 nodes Euler-
Bernoulli element, 2 nodes Timoshenko Full Integrate element and 2 nodes Timo-
shenko Reduce Integration element. Compare maximum displacements, moments
and shear for the 3 elements against the a/L relationship.

First of all, let us recall the applications discussed in class for the Euler-Bernoulli and Tim-
oshenko beam theories. The Euler-Bernoulli is the classical approach to study the bending of
slender plane beams. Its basic assumption is that a transverse cross section remains plane and
orthogonal to the beam axis after the deformation. It required the use of C1 elements, and when
using a cubic interpolation it is able to exactly reproduce the displacement field on the nodes.
On the other hand, Timoshenko beam theory accounts for the effect of transverse shear defor-
mation since it considers that cross sections of the beam do not neccesarily remain orthogonal
to the axis. Therefore, this theory applies for "thick" beams

(
λ = L

h < 10
)
where the transverse

shear deformation plays a role and also for slender beams (λ > 100 ) where shear deformation
is irrelevant.
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In the next three figures, a comparison among the maximum values of vertical displacements,
bending moments and shear forces is presented. In order to make these plots to be more ex-
planatory and easy comparable, the logarithm of these variables is plotted.

Figure 0.2 shows a comparison of the results obtained for the maximum displacements of
the beam under consideration. As it can be seen in the plot, the solution for the Timoshenko
full integrate element differs from the one obtained for both Euler-Bernoulli and Reduced Tim-
oshenko approaches when the ratio a/L is relatively low. These values of the ratio correspond
to slender beams, i.e. those beams which have a slenderness ratio of λ > 100.
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Figure 0.2: Representation of the natural logarithm of the maximum displacement for the dif-
ferent cases considered versus the ratio a/L where a is the width of the square section of the
beam and L is the total length of the beam.

The effect of transverse shear deformation is negligible for a slender beam (i.e. for a suffi-
ciently large value of λ). Hence, Timoshenko solution should coincide for this case with that
of conventional Euler-Bernoulli theory as the assumptions for the computations will reduce to
the same ones. What happens in reality is that as the parameter λ increases, the numerial
solution is progressively stiffer than the exact one (the matrix Ks becomes larger ). This ba-
sically means that the Timoshenko full integrated element is in fact unable to reproduce the
behaviour of slender beams. This effect is the so-called shear locking and it is the explanation
for the results obtained in the graph. As we consider less stiffer beams, i.e. higher values of a/L,
the Timoshenko full element solution approaches more and more to the conventional "exact"
Euler-Bernoulli solution.

One of the most popular techniques to overcome the problem of shear locking is the reduced
integration strategy, which basically consist of under-integrating the terms in the K

(e)
s matrix

using a quadrature of one order less than needed for exact results. This approach enables to
reduce the influence of the transverse shear stiffness and the 2-noded Timoshenko reduced el-
ement yields to be valid for both thick and slender beams. This is why the solution basically
matches the one from Euler-Bernoulli beam theory.
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Figure 0.3 shows a comparison for the maximum values of the bending moment in the beam
obtained with the three approaches.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

a/L

-7

-6

-5

-4

-3

-2

-1

0

1
lo

g
(M

)

Maximum bending moment

2-noded Euler-Bernoulli element

2-noded Timoshenko full integrate element

2-noded Timoshenko reduced element

Figure 0.3: Representation of the natural logarithm of the maximum bending moment for the
different cases considered versus the ratio a/L.

As before, for really slender beam (low values of the ratio a/L), the Timoshenko full inte-
grated element gives non-desirable results as it does not properly accounts for the behaviour of
slender beams. On the other hand, the Timoshenko reduced integration element mainly matches
de convenctional Euler-Bernoulli approach. Both basically give the same result (nearly constant
moment) for all the cases considered, as we can see in the plot.

Finally, figure 0.4 shows the results for the shear force. In this case, we just have the results
for both cases of the Timoshenko theory since the Euler-Bernoulli approach does not consider
the effect of transverse shear deformation. Again, one can note the the 2-noded Timoshenko
full integrated element solution is corrupted by spurious oscillations for slender beams. This is
due to the fact of the shear locking, already discussed previously in detail. The solution for the
reduced approach, is mainly constant and acceptable.
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Figure 0.4: Representation of the natural logarithm of the maximum shear force for the different
cases considered versus the ratio a/L.
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