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Assignment 5.1:
The isoparametric definition of the straight–node bar element in its local system x is,1
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Here ξ is the isoparametric coordinate that takes the values –1, 1 and 0 at nodes 1, 2 and 3 respectively, while
Ne

1 , N
e
2 and Ne

3 are the shape functions for a bar element.
For simplicity, take x̄1 = 0, x̄2 = L, x̄3 = 1

2 l + αl. Here l is the bar length and α a parameter that characterizes
how far node 3 is away from the midpoint location x̄ = 1

2 l.
Show that the minimum α (minimal in absolute value sense) for which J = dx̄/dξ vanishes at a point in the

element are±1/4 (the quarter points). Interpret this result as a singularity by showing that the axial strain becomes
infinite at an end point

Answer
The element that is going to be analyzed is a 3-node bar. So the element, defined by three nodes, is a quadratic
linear element. This means that in order to describe it, three parabolic shape functions are needed. As always, the
shape functions have to satisfy 1 =

∑
Ni, easy to see if it is computed the 1st row of system (1). The general way

of obtaining the shape function, for n number of nodes is:

Nj =

n∏
i=1,i6=j

(ξi − ξ)
(ξi − ξj)

(2)

that in this case will return to us three functions:

N1 =
ξ

2
(ξ − 1)

N2 =
ξ

2
(ξ + 1)

N3 = 1− ξ2

(3)

As can be noticed, these three functions are defined in the isoparametric coordinates and they fulfill the require-
ments, going to 1 in the respective node and 0 in the others two.

x is defined, from the second row of (1) as:

x =

3∑
i=1

xiNi (4)

in which xi are the cartesian coordinates: x1 = 0, x2 = l, x3 = l( 1
2 +α) in this case, andNi are the shape functions

defined in (4).

x = l
ξ

2
(1 + ξ) + l(

1

2
+ α)(1− ξ2) (5)
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Deriving it respect to ξ, we obtain the Jacobian that, as said before, is a scalar:

J =
dx
dξ

=
l

2
− 2αlξ = l(

1

2
− 2αξ) (6)

Taking the equation (6) and imposing equal to 0, it can be find the value of α that makes the Jacobian vanish:

1

2
− 2αξ = 0

α = ±1

4

(7)

As can be noticed, the Jacobian vanishes when |α| = 1/4. It can be seen that is a singularity as if we compute
the strain-displacements matrix B, defined as:

e = Bue

B =
dN

dx

(8)

in the isoparametric representation is going to be, for the chain rule

B =
dN

dξ

dξ

dx
(9)

and remembering that the Jacobian is defined from

J =
dx

dξ

it means that the matrix B takes the following form, from (9)

B =
dN

dξ
J−1 (10)

and if J = 0 it can be clearly seen from (8) that the axial strain becomes infinite.
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Assignment 5.2
Extend the results obtained from the previous Exercise for a 9-node plane stress element. The element is initially
a perfect square, nodes 5,6,7,8 are at the midpoint of the sides 1–2, 2–3, 3–4 and 4–1, respectively, and 9 at the
center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is important in
the construction of “singular elements” for fracture mechanics.

Answer
A 9-node plane stress element can be represented as following

Figure 1: The 9-node element

.
In an isoparametric representation, the shape functions will be 0, one for each node, being one in the respective

node and zero in the others. The shape functions are defined as following:
The ones related to the four corners, are the same as the 4-node square element, multiplying the isoparametric

coordinates in order to take the values of 0 in the mid-point nodes.

N1 =
1

4
(1− ξ)(1− η)ξη

N2 = −1

4
(1 + ξ)(1− η)ξη

N3 =
1

4
(1 + ξ)(1 + η)ξη

N4 = −1

4
(1− ξ)(1 + η)ξη

(11)

The four nodes in the mid-points are defined as:

N5 = −1

2
(1− ξ2)(1− η)η

N6 =
1

2
(1 + ξ)(1− η2)ξ

N7 =
1

2
(1− ξ2)(1 + η)η

N8 = −1

2
(1− ξ)(1− η2)ξ

(12)

and the central one is:
N9 = (1− ξ2)(1− η2) (13)

The approach to be used is the same as in the first part of the assignment, but extended in 2-D. From the
last row of (1), considering two dimensions coordinates and 9 shape functions, the two displacements vectors
u, v = u, v(ξ; η) can be defined as:

u(ξ; η) =

9∑
i=1

uiNi(ξ; η)

v(ξ; η) =

9∑
i=1

viNi(ξ; η)

(14)
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and the x, y description of the system as well:

x(ξ; η) =

9∑
i=1

xiNi(ξ; η)

y(ξ; η) =

9∑
i=1

yiNi(ξ; η)

(15)

While computing the derivative respect to the cartesian coordinates, it has to be applied the chain rule:[
∂
∂ξ
∂
∂η

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

] [ ∂
∂x
∂
∂y

]
(16)

and the first part of the right hand side of the (16) is the Jacobian J . So, when computing ∂/∂x and ∂/∂y, the
expression is: [ ∂

∂x
∂
∂y

]
= J−1

[
∂
∂ξ
∂
∂η

]
(17)

In order to describe the physic asked in the assignment, going from a regular square to a different system, sliding
the 5th point towards the 2nd, the Jacobian matrix has to be computed for the 9 shape functions, and is defined as:

J =

[
∂Ni/∂ξ
∂N1/∂η

] [
xi yi

]
(18)

considering it for 9 nodes it will result in a 2x2 matrix defined by:

J =


9∑
i=1

xi∂Ni/∂ξ
9∑
i=1

yi∂Ni/∂ξ

9∑
i=1

xi∂Ni/∂η
9∑
i=1

yi∂Ni/∂η

 (19)

To work in the isoparametric system, all the conditions and expressions needed have been defined in the previous
considerations. As can be seen from (16), to complete the conditions needed in order to see what happens if the
node 5 collapses forward the node 2, the Jacobian has to be computed and to do so, all the partial derivatives of
the shape functions. Considering that the origin of the reference system (x, y) is in the node 1, the coordinates of
each node are:

Xi = (xi; yi)

X1 = (0; 0)

X2 = (L; 0)

X3 = (L;L)

X4 = (0;L)

X5 = (L/2 + αL; 0)

X6 = (L;L/2)

X7 = (L/2;L)

X8 = (0;L/2)

X9 = (L/2;L/2)

(20)

in which −1/2 < α < 1/2 and initially α = 0 so the element is a perfect square. The ones in the isoparametric
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system are shown in figure 1. Defining the derivative of the shape functions respect to ξ are:

∂N1

∂ξ
=
η

4
(1− η)(1− 2ξ)

∂N2

∂ξ
=
η

4
(η − 1)

∂N3

∂ξ
=
η

4
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∂N4

∂ξ
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η

4
(1 + η)(2ξ − 1)

∂N5

∂ξ
= ηξ(1− η)

∂N6

∂ξ
=

1− η2

2
(1 + 2ξ)

∂N7

∂ξ
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∂ξ
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2
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∂ξ
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(21)

and respect to η:

∂N1

∂η
=
ξ

4
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4
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4
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2
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2
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∂N9

∂η
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(22)

Plugging the values of (20), (21) and (22) in the definition of (19), the Jacobian for the node 2 can be computed
plugging the isoparametric coordinates of node 2 (ξ; η) = (1,−1). As can be noticed, for those iosparametric
coordinates of the node 2, ∂/∂ξ of the shape functions N3, N4, N6, N7, N8 and N9 is equal to zero. Moreover,
considering the zeros of the cartesian coordinates defined at (20), the first two terms of the Jacobian will be:

J(1, 1) = L(1/2− 2α)

J(1, 2) = 0
(23)

Proceeding in the sameway as above, for the same isoparametric coordinates, ∂/∂η of the shape functionsN1, N4, N5, N7, N8

and N9 is equal to zero. So, considering the coordinates in (20), the second row of the Jacobian takes the form of:

J(2, 1) = L(−3/2) + L(−1/2) + 2L = 0

J(2, 2) = L(−1/2) + L = L/2
(24)

The resultant Jacobian for the node 2 is the following:

J =

[
L( 1

2 − 2α) 0
0 L

2

]
(25)
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Computing the determinant it can be noticed that the results will be the same as in the assignment 5.1

|J | = L2

2
(
1

2
− 2α) (26)

and it goes to zero when α = 1/4. As can be seen, α = 1/4 means that the node 5 is approaching the node 2, as
the coordinates of node 5 will be (L2 + αL; 0) = ( 3

4L; 0).


