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Assignment 5.1
The isoparametric definition of the straight-node bar element in its local system
Xis,
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Here ¢ is the isoparametric coordinate that take the value —1,1 and 0 at nodes
1,2 and 3 respectively, while Ni, N5 and N§ are the shape functions for a bar
element.

For simplicity, take x; = 0,x, = ,x3 = %l + al. Here | is the bar length and a a

parameter that characterizes how far node 3 is away from the midpoint location
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Show that the minimum a (minimal in absolute value sense) for which J = Z—’:

vanishes at a point in the element are +% (the quarter points) interpret the result

as a singularity by showing that the axial strain becomes at an end point.
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Figure.- The three-node bar element in its local system
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The critical value which we search is when the Jacobian vanishes:
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-1/4<a<1/4
In the case that

lal = 3,6 = +1
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That means that the Jacobian vanishes at one or another end point. In this case,
the axial strain become infinite at this point.

That is shown as,
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Assignment 5.2

Extend the results obtained from the previous exercise for a 9-node plane stress
element. The element is initially a perfect square, nodes 5, 6, 7, 8 are at the
midpoint of the sides1-2, 2-3, 3-4 and 4-1, respectively, and 9 at the center of the
square.

Move node 5 tangentially towards 2 until the jacobian determinant at 2 vanishes.
This result is important in the construction of “singular elements” for fracture
mechanic.

[Answer]
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The element shape function of the Lagrange family:
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Then the Jacobian is computed as:
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Evaluating the jacobian matrix at the node 2:
N Al

The determinant is:
J1,-Dl=1-2a

The condition for the jacobian vanishing is a = % That is the quarter point.

This condition is the same as per the one-dimensional case calculated in the previous
case.



