Assignment 5

Nadim Saridar

March 13, 2020

Assignment 5.1

This exercise can be represented like in the figure below:

Figure 1: Representation of the Bar Element

This is a 3 noded 1D element, therefore the shape functions are the following:

$$N_1 = \frac{\xi(\xi - 1)}{2}$$
$$N_2 = \frac{\xi(\xi + 1)}{2}$$
$$N_3 = 1 - \xi^2$$

From the slides of lecture 6, the equation to calculate the jacobian for a 1D element is the following:

$$\frac{\partial x}{\partial \xi} = \sum_{i=1}^{3} x_i \frac{\partial N_i}{\partial \xi}$$

From equation(7.1), and replacing x_i and N_i by their corresponding values, we get:

$$x = \frac{\xi(\xi+1)}{2}l + \left(\frac{l}{2} + \alpha l\right)(1 - \xi^2)$$

Therefore, the jacobian is the following:

$$J = \frac{2\xi + 1}{2}l - \xi l - 2\xi\alpha l$$

$$J = \frac{l - 4\xi\alpha}{2}$$

Placing this equation bigger or equal to zero $(J \ge 0)$, two cases are taken: $\xi = 1$ and $\xi = -1$. l is always positive, therefore it is removed from the equation. Putting both cases together, the following is obtained:

$$\frac{-1}{4} \le \alpha \le \frac{1}{4}$$

Placing $\alpha = 0$, we get J = 0. Therefore to calculate the stifness matrix, one should get the strain displacement matrix **B**.

$$\boldsymbol{B} = J^{-1} \frac{d\boldsymbol{N}}{d\xi}$$

Therefore the inverse of the jacobian tends to infinity $(J^{-1} = \frac{2}{0})$.

Assignment 5.2

The element described in this exercise is a 9 node quadralatiral element, like in the figure below:

Figure 2: Representation of the 9 Node Quadralatiral Element

Writing this problem in a isoparametric representation:

											$\lceil N_1 \rceil$
											N_2
[1]		[1]	1	1	1	1	1	1	1	1]	N_3
x		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	N_4
y	=	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	N_5
u_x		u_{x1}	u_{x2}	u_{x3}	u_{x4}	u_{x5}	u_{x6}	u_{x7}	u_{x8}	u_{x9}	N_6
$\lfloor u_y \rfloor$		u_{y1}	u_{y2}	u_{y3}	u_{y4}	u_{y5}	u_{y6}	u_{y7}	u_{y8}	u_{y9}	N_7
											N_8
											N_9

The shape functions are the ones for a quadratic quadrilatiral element in the reference element. The jacobian in this 2D case is a 2×2 matrix:

$$J = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$

Therefore, the jacobian can be written as following:

$$J(1,1) = \sum_{i=1}^{9} x_i \frac{\partial N_i}{\partial \xi}$$
$$J(1,2) = \sum_{i=1}^{9} x_i \frac{\partial N_i}{\partial \eta}$$
$$J(2,1) = \sum_{i=1}^{9} y_i \frac{\partial N_i}{\partial \xi}$$
$$J(2,2) = \sum_{i=1}^{9} y_i \frac{\partial N_i}{\partial \eta}$$

The determinant of the jacobian is the following:

$$|J| = J(1,1)J(2,2) - J(2,1)J(1,2)$$

After calculating each element of the jacobian matrix, we notice that J(2,1) = 0 therefore for calculating the determinant, J(1,1)J(2,2) is enough to be calculated.

Choosing the coordinates of the points similar to the first exercise, and following the given of this problem that node 5 should get closer to node 2:

$x_1 = x_4 = x_8 = 0$	$y_1 = y_2 = y_5 = 0$
$x_7 = x_9 = L/2$	$y_6 = y_8 = y_9 = L/2$
$x_2 = x_3 = x_6 = L$	$y_3 = y_4 = y_7 = L$
$x_5 = (L/2 + \alpha L)$	$(\alpha \ge 0)$

To solve for alpha, only J(1,1) needs to be calculated and then solved for the value of α to get |J| = 0.

After solving for α , the same value from the first exercise is obtained $\alpha = 1/4$. Therefore one can conclude that if a quadratic element is used, one should make sure that a middle node (in the case of this exercise nodes 5,6,7 and 8) should not be in a distance of $1/4^{th}$ of the the length of the element's side to a side node (in the case of this exercise nodes 1,2,3 and 4).

Below is the code used to solve this exercise:

	E	xercise2.m* 🗶 🕂	
1	-	syms chi eta L alpha	
2		% Defining the shape functions and the derivative	olo
3		% with respect to chi.	olo
4	-	N1 = 1/4*(1-chi)*(1-eta)*chi*eta;	
5	-	Nlc=diff(Nl,chi);	
6	-	N2 = -1/4*(l+chi)*(l-eta)*chi*eta;	
7	-	N2c=diff(N2,chi);	
8	-	N3 = 1/4*(1+chi)*(1+eta)*chi*eta;	
9	-	N3c=diff(N3, chi);	
10	-	N4 = -1/4*(1-chi)*(1+eta)*chi*eta;	
11	-	N4c=diff(N4, chi);	
12	-	N5 = -1/2*(1-chi^2)*(1-eta)*eta;	
13	-	N5c=diff(N5,chi);	
14	-	N6 = 1/2*(1+chi)*(1-eta^2)*chi;	
15	-	N6c=diff(N6, chi);	
16	-	$N7 = 1/2*(1-chi^2)*(1+eta)*eta;$	
17	-	N7c=diff(N7,chi);	
18	-	N8 = -1/2*(1-chi)*(1-eta^2)*chi;	
19	-	N8c=diff(N8, chi);	
20	7	$N9 = (1-chi^2) * (1-eta^2);$	
21	-	N9c=diff(N9, chi);	
22		<pre>% Calculating J(2,1) %</pre>	
23	-	yl = (N3c+N4c+N7c) *L;	
24	7	$y_2 = (N6c+N8c+N9c) * (L/2);$	
25	-	Jy = y1+y2;	
26	-	Jy = simplify(Jy);	
27	-	disp('Jy =')	
28	7	disp(Jy);	
29		<pre>% Calculating J(1,1) %</pre>	
30	_	x1 = (N2c+N3c+N6c) *L;	
31	-	x2 = (N7c+N9c) * (L/2);	
32	_	x3 = (L/2+alpha*L)*(N5c);	
33	-	J=x1+x2+x3;	
34	_	<pre>simplify(J);</pre>	
35	-	ch1=1;eta=-1;	
36			
37	_	J-Subs(J);	
38		* Solving for alpha *	
39	_	aipna=soive(J);	
40		disp(.arbug=.);	
41	-	drsh(arbug);	

Figure 3: Script for Exercise2

```
>> Exercise2
Jy =
0
alpha=
1/4
```

Figure 4: Results for Exercise2