Assignment 5

Nadim Saridar

March 13, 2020

Assignment 5.1

This exercise can be represented like in the figure below:

Figure 1: Representation of the Bar Element
This is a 3 noded 1D element, therefore the shape functions are the following:

$$
\begin{aligned}
& N_{1}=\frac{\xi(\xi-1)}{2} \\
& N_{2}=\frac{\xi(\xi+1)}{2} \\
& N_{3}=1-\xi^{2}
\end{aligned}
$$

From the slides of lecture 6, the equation to calculate the jacobian for a 1D element is the following:

$$
\frac{\partial x}{\partial \xi}=\sum_{i=1}^{3} x_{i} \frac{\partial N_{i}}{\partial \xi}
$$

From equation(7.1), and replacing x_{i} and N_{i} by their corresponding values, we get:

$$
x=\frac{\xi(\xi+1)}{2} l+\left(\frac{l}{2}+\alpha l\right)\left(1-\xi^{2}\right)
$$

Therefore, the jacobian is the following:

$$
J=\frac{2 \xi+1}{2} l-\xi l-2 \xi \alpha l
$$

$$
J=\frac{l-4 \xi \alpha}{2}
$$

Placing this equation bigger or equal to zero $(J \geq 0)$, two cases are taken: $\xi=1$ and $\xi=-1 . l$ is always positive, therefore it is removed from the equation. Putting both cases together, the following is obtained:

$$
\frac{-1}{4} \leq \alpha \leq \frac{1}{4}
$$

Placing $\alpha=0$, we get $J=0$. Therefore to calculate the stifness matrix, one should get the strain displacement matrix \boldsymbol{B}.

$$
\boldsymbol{B}=J^{-1} \frac{d \boldsymbol{N}}{d \xi}
$$

Therefore the inverse of the jacobian tends to infinity $\left(J^{-1}=\frac{2}{0}\right)$.

Assignment 5.2

The element described in this exercise is a 9 node quadralatiral element, like in the figure below:

Figure 2: Representation of the 9 Node Quadralatiral Element

Writing this problem in a isoparametric representation:

$$
\left[\begin{array}{c}
1 \\
x \\
y \\
u_{x} \\
u_{y}
\end{array}\right]=\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} & y_{9} \\
u_{x 1} & u_{x 2} & u_{x 3} & u_{x 4} & u_{x 5} & u_{x 6} & u_{x 7} & u_{x 8} & u_{x 9} \\
u_{y 1} & u_{y 2} & u_{y 3} & u_{y 4} & u_{y 5} & u_{y 6} & u_{y 7} & u_{y 8} & u_{y 9}
\end{array}\right]\left[\begin{array}{l}
N_{1} \\
N_{2} \\
N_{3} \\
N_{4} \\
N_{5} \\
N_{6} \\
N_{7} \\
N_{8} \\
N_{9}
\end{array}\right]
$$

The shape functions are the ones for a quadratic quadrilatiral element in the reference element. The jacobian in this 2 D case is a 2×2 matrix:

$$
J=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

Therefore, the jacobian can be written as following:

$$
\begin{aligned}
& J(1,1)=\sum_{i=1}^{9} x_{i} \frac{\partial N_{i}}{\partial \xi} \\
& J(1,2)=\sum_{i=1}^{9} x_{i} \frac{\partial N_{i}}{\partial \eta} \\
& J(2,1)=\sum_{i=1}^{9} y_{i} \frac{\partial N_{i}}{\partial \xi} \\
& J(2,2)=\sum_{i=1}^{9} y_{i} \frac{\partial N_{i}}{\partial \eta}
\end{aligned}
$$

The determinant of the jacobian is the following:

$$
|J|=J(1,1) J(2,2)-J(2,1) J(1,2)
$$

After calculating each element of the jacobian matrix, we notice that $J(2,1)=$ 0 therefore for calculating the determinant, $J(1,1) J(2,2$ is enough to be calculated.

Choosing the coordinates of the points similar to the first exercise, and following the given of this problem that node 5 should get closer to node 2 :

$$
\begin{array}{lc}
x_{1}=x_{4}=x_{8}=0 & y_{1}=y_{2}=y_{5}=0 \\
x_{7}=x_{9}=L / 2 & y_{6}=y_{8}=y_{9}=L / 2 \\
x_{2}=x_{3}=x_{6}=L & y_{3}=y_{4}=y_{7}=L \\
x_{5}=(L / 2+\alpha L) & (\alpha \geq 0)
\end{array}
$$

To solve for alpha, only $J(1,1)$ needs to be calculated and then solved for the value of α to get $|J|=0$.

After solving for α, the same value from the first exercise is obtained $\alpha=1 / 4$.
Therefore one can conclude that if a quadratic element is used, one should make sure that a middle node (in the case of this exercise nodes 5,6,7 and 8) should not be in a distance of $1 / 4^{t h}$ of the the length of the element's side to a side node (in the case of this exercise nodes $1,2,3$ and 4).

Below is the code used to solve this exercise:

```
Exercise2.m* * +
    syms chi eta L alpha
    % Defining the shape functions and the derivative %
    % with respect to chi. %
    N1 = 1/4*(1-chi)*(1-eta)*chi*eta;
    Nlc=diff(N1,chi);
    N2 = -1/4*(1+chi)*(1-eta)*chi*eta;
    N2c=diff(N2,chi);
    N3 = 1/4* (1+chi)*(1+eta)*chi*eta;
    N3c=diff(N3,chi);
    N = -1/4* (1-chi)*(1+eta)*chi*eta;
    N4C=diff(N4,chi);
    N5 = -1/2* (1-chi^2)* (1-eta)*eta;
    N5c=diff(N5,chi);
    N6 = 1/2* (1+chi)*(1-eta^2)*chi;
    N6C=diff(N6,chi);
    N7 = 1/2* (1-chi^2)*(1+eta)*eta;
    N7c=diff(N7,chi);
    N8 = -1/2* (1-chi)*(1-eta^2)*chi;
    N8c=diff(N8,chi);
    N9 = (1-chi^2)*(1-eta^2);
    N9c=diff(N9,chi) ;
    % Calculating J (2,1) %
    y1 = (N3c+N4c+N7c)*L;
    y2 = (N6c+N8c+N9c)* (L/2);
    Jy = yl+y2;
    Jy = simplify(Jy);
    disp('Jy =')
    disp(Jy);
    C Calculating J(1,1) है
    xl = (N2c+N3c+N6c)*L
    x2 = (N7c+N9c)* (L/2);
    x3 = (L/2+alpha*L)* (N5c);
    J=x l +x2+x3;
    simplify(J);
    chi=1;eta=-1;
    |
    J=subs (J);
    % Solving for alpha %
    alpha=solve(J);
    disp('alpha=');
    disp(alpha);
```

Figure 3: Script for Exercise2

```
>> Exercise2
JY =
0
alpha=
1/4
```

Figure 4: Results for Exercise2

