CSMD: Assignment 5

Juan Pedro Roldán

March 2018

1 Three node bar element

1.1 Shape-functions coefficients

We can compute the coefficients of each shape-functions by substituting ξ in each N_{i} For $N_{1}(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2}$:

$$
\begin{array}{r}
N_{1}(0)=0=a_{0} \\
N_{1}(1)=0=a_{1}+a_{2} \\
N_{1}(-1)=1=a_{2}-a_{1} \tag{1}\\
a_{0}=0, a_{1}=-\frac{1}{2}, a_{2}=\frac{1}{2}
\end{array}
$$

For $N_{2}(\xi)=b_{0}+b_{1} \xi+b_{2} \xi^{2}$:

$$
\begin{array}{r}
N_{2}(0)=0=b_{0} \\
N_{2}(-1)=0=-b_{1}+b_{2} \\
N_{2}(1)=1=b_{2}+b_{1} \tag{2}\\
b_{0}=0, b_{1}=\frac{1}{2}, b_{2}=\frac{1}{2}
\end{array}
$$

For $N_{3}(\xi)=c_{0}+c_{1} \xi+c_{2} \xi^{2}$:

$$
\begin{array}{r}
N_{3}(-1)=0=c_{0}-c_{1}+c_{2} \\
N_{3}(1)=0=c_{0}+c_{1}+c_{2} \\
N_{3}(0)=1=c_{0} \tag{3}\\
c_{0}=1, c_{1}=0, c_{2}=-1
\end{array}
$$

The shape-functions then become $N_{1}(\xi)=-\frac{\xi}{2}+\frac{\xi^{2}}{2}, N_{2}(\xi)=\frac{\xi}{2}+\frac{\xi^{2}}{2}$ and $N_{3}(\xi)=1-\xi^{2}$.

1.2 Unity sum verification

It can be directly shown that the sum of the three shape-functions is 1 :

$$
\begin{equation*}
N_{1}(\xi)+N_{2}(\xi)+N_{3}(\xi)=-\frac{\xi}{2}+\frac{\xi^{2}}{2}+\frac{\xi}{2}+\frac{\xi^{2}}{2}+1-\xi^{2}=1 \tag{4}
\end{equation*}
$$

1.3 Shape-functions derivatives

Derivating each N_{i} with respect to the natural coordinate ξ :

$$
\begin{gather*}
\frac{\partial N_{1}}{\partial \xi}=\xi-\frac{1}{2} \\
\frac{\partial N_{2}}{\partial \xi}=\xi+\frac{1}{2} \tag{5}\\
\frac{\partial N_{3}}{\partial \xi}=-2 \xi
\end{gather*}
$$

2 The five node quadrilateral element

The fifth shape-function is the same as the nineth shape-function of the 9-node quadrilateral quadratic element, which is 1 in the central point and 0 in the sides. Its expression is

$$
\begin{equation*}
N_{5}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \tag{6}
\end{equation*}
$$

Following the hint, we make for $\mathrm{i}=1: 4, N_{i}=\hat{N}_{i}+\alpha N_{5}$, where \hat{N}_{i} is the 4noded quadrilateral shape-function corresponding to node i. We can take any shape-function to compute α, as this parameter is the same for all of them. Substituting into N_{1} yields:

$$
\begin{array}{r}
N_{1}=\frac{1}{4}(1-\xi)(1-\eta)+\alpha\left[\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)\right] \\
N_{1}(0,0)=0=\frac{1}{4}+\alpha \tag{7}
\end{array}
$$

Isolating α, we deduce its value: $\alpha=-\frac{1}{4}$. The sum of all shape-functions is, again, unity:

$$
\begin{align*}
& \sum_{i=1}^{3} N_{i}=\hat{N}_{1}+\hat{N}_{2}+\hat{N}_{3}+\hat{N}_{4}+N_{5}+4 \alpha N_{5}= \tag{8}\\
= & 1+\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)-4 \frac{1}{4}\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)=1
\end{align*}
$$

3 Integration of Gauss products

In order to ensure rank sufficiency for hexaedron numerical integration, we have to use enough Gauss points so as to have:

$$
\begin{equation*}
n_{G} n_{E} \geq n_{F}-n_{R} \tag{9}
\end{equation*}
$$

with $n_{G}, n_{E}, n_{F}, n_{R}$ being the number of Gauss points, order of the stress-strain matrix, number of independent rigid body motions and the element DoF, respectively. For a hexaedron of n nodes, the values of these variables are:

- $n_{G}=$ to be determined
- $n_{E}=6$
- $n_{R}=6 \quad$ (3 translations and 3 rotations)
- $n_{F}=3 n$

Next table shows the optimal (minimum) values of n_{G} :

n	8	20	27	64
n_{F}	24	60	81	192
n_{R}	6	6	6	6
n_{G}	$8(2 \times 2 \times 2)$	$27(3 \times 3 \times 3)$	$27(3 \times 3 \times 3)$	$64(4 \times 4 \times 4)$

