UNIVERSITAT POLITECNICA DE CATALUNYA

MASTER OF SCIENCE IN COMPUTATIONAL MECHANICS

COMPUTATIONAL STRUCTURAL MECHANICS AND DYNAMICS

Assignment 5

Convergence Requirements

Author:
Carlos Eduardo Ribeiro Santa Cruz MENDOZA

March 7, 2019

UNIVERSITAT POLITECNICA
DE CATALUNYA

BARCELONATECH




1 Straight-node bar element

The quadratic bar element described on the problem is represented on Figure 1.1.

Figure 1.1: 3-noded bar element

As provided, the isoparametric relations for the 1-D element are given by Equation
1.1

1 1 1 1 Ng(€)
T | =T T2 T3 N§(€) (1.1)
u Uy Uy Us N5(€)

Whereas the quadratic shape functions are:
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Inserting Equation 1.2 on Equation 1.1 and substituting the values of Z; we can find
Z as a function of &, yielding:
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The relationship found on Equation 1.3 allows the calculation of the jacobian, respon-
sible for the mapping between z and &.
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We notice that the Jacobian can reach a null value on two cases:
1

Node 1: ¢=-1 and a= -7 = J=0 (1.5)

1
Node 2: ¢=1 and a=, = J=0 (1.6)



These singularities bring consequences to the displacement field, which, from Equation

1.1, is given by:

u = u1N1 + UQNQ + U3N3
But from the definition of the strain we get
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However, from the chain rule we can state
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Thus, the strain is a function of the inverse of the Jacobian. This means that on the
cases that the Jacobian is null, the strain would tend to infinity, representing a fracture

failure.



2 Quadrilateral Element

The biquadratic element with side [ described on the problem is represented on Figure
2.1.
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Figure 2.1: 9-node quadrilateral element

The position of the node 5 is initially (Z,%) = (0, —%) and it moves tangentially to
node 2, yielding coordinates (z, ) = (al, —1).
The shapes functions for the element are given by
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Similarly to the bar element, we can find the relation between the global coordinates
and the isoparametric coordinates via the shape functions on Equation 2.1.
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For the 2-D case, the Jacobian is given by a matrix:

J - 813/877 8y/877

(2.3)

Whereas the derivatives of the shape functions needed to calculate the Jacobian are:
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The relations stated on Equation 2.4 allow the evaluation of the Jacobian at the node
2, with coordinates (£,7) = (1, —1), yielding:
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For the 2-D case, the singularity takes place when the determinant of the Jacobian is
zero. That is, the matrix cannot be inverted (analogous to the division by zero in the
1-D case). The determinant of the Jacobian takes the value of zero for:
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We notice that, again, a = i implicates on a singular problem, where the strain tend
to infinity and fracture mechanics may apply.
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