Universitat Politècnica de Catalunya

Master of Science in Computational Mechanics

Assignment 5
 Convergence Requirements

Author:
Carlos Eduardo Ribeiro Santa Cruz Mendoza

March 7, 2019

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

1 Straight-node bar element

The quadratic bar element described on the problem is represented on Figure 1.1.

Figure 1.1: 3-noded bar element
As provided, the isoparametric relations for the 1-D element are given by Equation 1.1:

$$
\left[\begin{array}{l}
1 \tag{1.1}\\
\bar{x} \\
\bar{u}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3} \\
\bar{u}_{1} & \bar{u}_{2} & \bar{u}_{3}
\end{array}\right]\left[\begin{array}{l}
N_{1}^{e}(\xi) \\
N_{2}^{e}(\xi) \\
N_{3}^{e}(\xi)
\end{array}\right]
$$

Whereas the quadratic shape functions are:

$$
\begin{equation*}
N_{1}=\frac{1}{2} \xi(\xi-1) \quad N_{2}=\frac{1}{2} \xi(\xi+1) \quad N_{3}=1-\xi^{2} \tag{1.2}
\end{equation*}
$$

Inserting Equation 1.2 on Equation 1.1 and substituting the values of \bar{x}_{i} we can find \bar{x} as a function of ξ, yielding:

$$
\begin{equation*}
\bar{x}=\bar{x}_{1} N_{1}+\bar{x}_{2} N_{2}+\bar{x}_{3} N_{3} \quad \Rightarrow \quad \bar{x}=\frac{l}{2} \xi(\xi+1)+\left(\frac{l}{2}+\alpha l\right) \cdot\left(1-\xi^{2}\right) \tag{1.3}
\end{equation*}
$$

The relationship found on Equation 1.3 allows the calculation of the jacobian, responsible for the mapping between \bar{x} and ξ.

$$
\begin{equation*}
J=\frac{d \bar{x}}{d \xi} \quad \Rightarrow \quad J=l\left(\frac{1}{2}-2 \alpha \xi\right) \tag{1.4}
\end{equation*}
$$

We notice that the Jacobian can reach a null value on two cases:

$$
\begin{equation*}
\text { Node 1: } \quad \xi=-1 \quad \text { and } \quad \alpha=-\frac{1}{4} \quad \Rightarrow \quad J=0 \tag{1.5}
\end{equation*}
$$

Node 2: $\quad \xi=1 \quad$ and $\quad \alpha=\frac{1}{4} \quad \Rightarrow \quad J=0$

These singularities bring consequences to the displacement field, which, from Equation 1.1, is given by:

$$
\begin{equation*}
u=u_{1} N_{1}+u_{2} N_{2}+u_{3} N_{3} \tag{1.7}
\end{equation*}
$$

But from the definition of the strain we get

$$
\begin{equation*}
\varepsilon=\frac{d u}{d \bar{x}} \Rightarrow \varepsilon=u_{1} \frac{d N_{1}}{d \bar{x}}+u_{2} \frac{d N_{2}}{d \bar{x}}+u_{3} \frac{d N_{3}}{d \bar{x}} \tag{1.8}
\end{equation*}
$$

However, from the chain rule we can state

$$
\begin{equation*}
\frac{d N_{i}}{d \bar{x}}=\frac{d N_{i}}{d \xi} \frac{d \xi}{d \bar{x}}=\frac{d N_{i}}{d \xi} J^{-1} \tag{1.9}
\end{equation*}
$$

Thus, the strain is a function of the inverse of the Jacobian. This means that on the cases that the Jacobian is null, the strain would tend to infinity, representing a fracture failure.

2 Quadrilateral Element

The biquadratic element with side l described on the problem is represented on Figure 2.1.

Figure 2.1: 9-node quadrilateral element

The position of the node 5 is initially $(\bar{x}, \bar{y})=\left(0,-\frac{l}{2}\right)$ and it moves tangentially to node 2 , yielding coordinates $(\bar{x}, \bar{y})=\left(\alpha l,-\frac{l}{2}\right)$.

The shapes functions for the element are given by

$$
\begin{array}{rlrl}
N_{1} & =\frac{1}{4} \xi \eta(\xi-1)(\eta-1) & N_{2} & =\frac{1}{4} \xi \eta(\xi+1)(\eta-1) \\
N_{3} & =\frac{1}{4} \xi \eta(\xi+1)(\eta+1) & N_{4} & =\frac{1}{4} \xi \eta(\xi-1)(\eta+1) \\
N_{5} & =\frac{1}{2} \eta\left(1-\xi^{2}\right)(\eta-1) & N_{6} & =\frac{1}{2} \xi(\xi+1)\left(1-\eta^{2}\right) \tag{2.1}\\
N_{7} & =\frac{1}{2} \eta\left(1-\xi^{2}\right)(\eta+1) & N_{8} & =\frac{1}{2} \xi(\xi-1)\left(1-\eta^{2}\right) \\
N_{9}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)
\end{array}
$$

Similarly to the bar element, we can find the relation between the global coordinates and the isoparametric coordinates via the shape functions on Equation 2.1.

$$
\begin{equation*}
\bar{x}=\sum_{i=1}^{9} \bar{x}_{i} N_{i} \quad \bar{y}=\sum_{i=1}^{9} \bar{y}_{i} N_{i} \tag{2.2}
\end{equation*}
$$

For the 2-D case, the Jacobian is given by a matrix:

$$
\boldsymbol{J}=\left[\begin{array}{ll}
\partial x / \partial \xi & \partial y / \partial \xi \tag{2.3}\\
\partial x / \partial \eta & \partial y / \partial \eta
\end{array}\right]
$$

Whereas the derivatives of the shape functions needed to calculate the Jacobian are:

$$
\begin{array}{cc}
\frac{\partial N_{1}}{\partial \xi}=\frac{1}{4} \eta(2 \xi-1)(\eta-1) & \frac{\partial N_{1}}{\partial \eta}=\frac{1}{4} \xi(\xi-1)(2 \eta-1) \\
\frac{\partial N_{2}}{\partial \xi}=\frac{1}{4} \eta(2 \xi+1)(\eta-1) \quad \frac{\partial N_{2}}{\partial \eta}=\frac{1}{4} \xi(\xi+1)(2 \eta-1) \\
\frac{\partial N_{3}}{\partial \xi}=\frac{1}{4} \eta(2 \xi+1)(\eta+1) \quad \frac{\partial N_{3}}{\partial \eta}=\frac{1}{4} \xi(\xi+1)(2 \eta+1) \\
\frac{\partial N_{4}}{\partial \xi}=\frac{1}{4} \eta(2 \xi-1)(\eta+1) \quad \frac{\partial N_{4}}{\partial \eta}=\frac{1}{4} \xi(\xi-1)(2 \eta+1) \\
\frac{\partial N_{5}}{\partial \xi}=-\xi \eta(\eta-1) \quad \frac{\partial N_{5}}{\partial \eta}=\frac{1}{2}\left(1-\xi^{2}\right)(2 \eta-1) \tag{2.4}\\
\frac{\partial N_{6}}{\partial \xi}=\frac{1}{2}(2 \xi+1)\left(1-\eta^{2}\right) \quad \frac{\partial N_{6}}{\partial \eta}=-\xi \eta(\xi+1) \\
\frac{\partial N_{7}}{\partial \xi}=-\xi \eta(\eta+1) \quad \frac{\partial N_{7}}{\partial \eta}=\frac{1}{2}\left(1-\xi^{2}\right)(2 \eta+1) \\
\frac{\partial N_{8}}{\partial \xi}=\frac{1}{2}(2 \xi-1)\left(1-\eta^{2}\right) \quad \frac{\partial N_{8}}{\partial \eta}=-\xi \eta(\xi-1) \\
\frac{\partial N_{9}}{\partial \xi}=-2 \xi\left(1-\eta^{2}\right) \quad \frac{\partial N_{9}}{\partial \eta}=-2 \eta\left(1-\xi^{2}\right)
\end{array}
$$

The relations stated on Equation 2.4 allow the evaluation of the Jacobian at the node 2 , with coordinates $(\xi, \eta)=(1,-1)$, yielding:

$$
\boldsymbol{J}_{\text {node 2 }}=\left[\begin{array}{cc}
\frac{l}{2}-2 \alpha l & 0 \tag{2.5}\\
0 & \frac{l}{2}
\end{array}\right]
$$

For the 2-D case, the singularity takes place when the determinant of the Jacobian is zero. That is, the matrix cannot be inverted (analogous to the division by zero in the 1-D case). The determinant of the Jacobian takes the value of zero for:

$$
\begin{equation*}
|\boldsymbol{J}|=\frac{l^{2}}{4}-l^{2} \alpha=0 \quad \Rightarrow \quad \alpha=\frac{1}{4} \tag{2.6}
\end{equation*}
$$

We notice that, again, $\alpha=\frac{1}{4}$ implicates on a singular problem, where the strain tend to infinity and fracture mechanics may apply.

