Computational Structural Mechanics and Dynamics

Assignment 5
Zahra Rajestari

Problem 5.1

Consider a three-node bar element referred to the natural coordinate ξ. The two end nodes and the mid node are identified as 1,2 and 3 respectively. The natural coordinates of nodes 1,2 and 3 are $\xi=-1, \xi=1$ and $\xi=0$, respectively. The variation of the shape functions $N_{1}(\xi), N_{2}(\xi)$ and $N_{3}(\xi)$ is sketched in the figure below. These functions must be quadratic polynomials in ξ :

$$
N_{1}^{e}(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2} \quad N_{2}^{e}(\xi)=b_{0}+b_{1} \xi+b_{2} \xi^{2} \quad N_{3}^{e}(\xi)=c_{0}+c_{1} \xi+c_{2} \xi^{2}
$$

(a) Determine the coefficients $a 0, \ldots, c 2$ using the node value conditions depicted in figure. For example $N_{1}^{e}=1$ for $\xi=1$ and 0 for the rest of natural coordinates. The rest of the nodes follow the same scheme.

Solution

$$
\begin{array}{ccc}
N_{1}^{e}(-1)=a_{0}-a_{1}+a_{2}=1 & N_{2}^{e}(-1)=b_{0}-b_{1}+b_{2}=0 & N_{3}^{e}(-1)=c_{0}-c_{1}+c_{2}=0 \\
N_{1}^{e}(0)=a_{0}=0 & N_{2}^{e}(0)=b_{0}=0 & N_{3}^{e}(0)=c_{0}=1 \\
N_{1}^{e}(1)=a_{0}+a_{1}+a_{2}=0 & N_{2}^{e}(1)=b_{0}+b_{1}+b_{2}=1 & N_{3}^{e}(1)=c_{0}+c_{1}+c_{2}=0
\end{array}
$$

Solving the linear system we can know the values for $a 0, \ldots, c 2$:

$$
N_{1}^{e}(\xi)=\frac{1}{2} \xi(1-\xi) \quad N_{2}^{e}(\xi)=\frac{1}{2} \xi(1+\xi) \quad N_{3}^{e}(\xi)=1-\xi^{2}
$$

(b) Verify that their sum is identically one.

Solution

$$
N_{1}+N_{2}+N_{3}=\frac{1}{2} \xi-\frac{1}{2} \xi+\frac{1}{2} \xi^{2}+\frac{1}{2} \xi^{2}-\xi^{2}+1=1
$$

(c) Calculate their derivatives respect to the natural coordinates.

Solution

$$
\frac{\partial N_{1}}{\partial \xi}=\xi-\frac{1}{2} \quad \frac{\partial N_{2}}{\partial \xi}=\xi+\frac{1}{2} \quad \frac{\partial N_{3}}{\partial \xi}=2 \xi
$$

Problem 5.2

A five node quadrilateral element has the nodal configuration shown if the figure with two perspective views of N_{1}^{e} and N_{5}^{e}. Find five shape functions $N_{i}^{e}, i=1, \ldots, 5$ that satisfy compatibility and also verify that their sum is unity.

Solution

According to the figure, the shape function N_{5} is obtained as the following:

$$
N_{5}=C_{5} L_{12} L_{23} L_{34} L_{41} \Longrightarrow C_{5}(1-\xi)(1-\eta)(1+\xi)(1+\eta)
$$

In order to find C_{5} we should substitute the coordinates of node $5,\{0,0\}$, in the equation. So, C_{5} is found to be equal to 1 .

$$
N_{5}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)
$$

The shape-functions for corner nodes are:
$N_{1}=\frac{1}{4}(1-\xi)(1-\eta) \quad N_{2}=\frac{1}{4}(1+\xi)(1-\eta) \quad N_{3}=\frac{1}{4}(1+\xi)(1+\eta) \quad N_{4}=\frac{1}{4}(1-\xi)(1+\eta)$
which can be written in a general form as:

$$
N_{i}=\frac{1}{4}\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right)
$$

Therefore, the following formula holds for all nodes:

$$
N_{i}=\frac{1}{4}\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right)+\alpha N_{5}
$$

in which α can be found substituting the coordinates of node 5 into any of the shape functions and setting it equal to zero. For instance, substitution of $\xi=\eta=0$ in N_{1} yields:

$$
N_{1}=\frac{1}{4}(1-\xi)(1-\eta)+\alpha\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \Longrightarrow N_{1}=\frac{1}{4}+\alpha=0 \Longrightarrow \alpha=-\frac{1}{4}
$$

In addition, the summation of all shape functions is equal to 1 :
$N_{1}+N_{2}+N_{3}+N_{4}+N_{5}=\frac{1}{4}(1-\xi)(1-\eta)+\frac{1}{4}(1+\xi)(1-\eta)+\frac{1}{4}(1+\xi)(1+\eta)+\frac{1}{4}(1-\xi)(1+\eta)+4 \alpha N_{5}+N_{5}$
$\Longrightarrow \frac{1}{4}(1-\xi-\eta+\xi \eta)+\frac{1}{4}(1+\xi-\eta-\xi \eta)+\frac{1}{4}(1+\xi+\eta+\xi \eta)+\frac{1}{4}(1-\xi+\eta-\xi \eta)-N_{5}+N_{5}=1$

Problem 5.3

Which minimum integration rules of Gauss-product type gives a rank sufficient stiffness matrix for these elements:

1. the 8 -node hexahedron
2. the 20 -node hexahedron
3. the 27 -node hexahedron
4. the 64 -node hexahedron

Solution

The following formula is to be used for solving this problem:

$$
r=\min \left(n_{F}-n_{R}, n_{E} n_{G}\right)
$$

where n_{F}, n_{R}, n_{E} and n_{G} are number of element DoF, number of independent rigid body modes, order of E stress-strain matrix and number of Gauss points in integration rule for K , respectively. r is the actual rank of stiffness matrix.

In our case, each of the parameters can be found as:

$$
n-F=3 n ; \quad n_{R}=6 ; \quad n_{E}=6
$$

We define a parameter "rank deficiency" which has to be equal to zero, as the following:

$$
d=\left(n_{F}-n_{R}\right)-r
$$

According to the formulas, we start to find the number of Gauss points, n_{G}, for each case: 1.

$$
3 \times 8-6=\min \left(3 \times 8-6,6 n_{G}\right) \Longrightarrow n_{G}=3
$$

2.

$$
3 \times 20-6=\min \left(3 \times 20-6,6 n_{G}\right) \Longrightarrow n_{G}=9
$$

3.

$$
3 \times 27-6=\min \left(3 \times 27-6,6 n_{G}\right) \Longrightarrow n_{G}=13
$$

4.

$$
3 \times 64-6=\min \left(3 \times 64-6,6 n_{G}\right) \Longrightarrow n_{G}=31
$$

