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Assignment 5:

1. The isoparametric definition of the straight-node bar element in its local system X is:
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Here § is the isoparametric coordinate that takes the values -1, 1 and 0 at nodes 1,
2 and 3 respectively, while Ni, N5 and N§ are the shape functions for a bar element.

For simplicity, take x; =0, x; =L, x3 = %L + al. Here L is the bar length and a a
parameter that characterizes how far node 3 is away from the midpoint location x = %L.

Show that the minimum a (minimal in absolute value sense) for which | = dx/d¢§
vanishes at a point in the element are ii (the quarter points). Interpret this result

as a singularity by showing that the axial strain becomes infinite at an end point.

First of all, the trial functions are defined as the Lagrange interpolation functions of
2" order:
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Using the isoparametric formulation, the geometry mapping is:
x =% Ni (§) + XN (§) + %3N5(§)

And the Jacobian is defined as:
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Substituting the values for the nodal coordinates:
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The critical value we are searching is when the Jacobian vanishes:
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The case we are interested is when this critical value fits inside the element domain:
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In the case that |a| = %, &* = +1. That means that the Jacobian vanishes at one or

another end point. In this case, the axial strain become infinite at this point. This is
easily shown as:
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. Extend the result obtained from the previous exercise for a 9-node plane stress
element. The element is initially a perfect square, nodes 5, 6, 7, 8 are at the midpoint
of the sides 1-2, 2-3, 3-4 and 4-1, respectively, and 9 at the centre of the square.
Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes.
This result is important in the construction of “singular elements” for fracture
mechanics.

The nodal coordinates are:
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The element shape functions are of the Lagrange family:
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The Jacobian is computed as:
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Evaluating the Jacobian matrix at the node 2:
_[1—-2a 0
U [ 0 1]

The determinant is:
J(1,-D]|=1-2a

The condition in order the Jacobian to vanish is @ = > That is, the quarter point.
This condition is the same than in the one dimensional case calculated in the previous

case.



