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Assignment 5.1 - 1-D Convergence

The isoparametric definition of the straight—node bar element in its local system z is,
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Here ¢ is the isoparametric coordinate that takes the values —1, 1 and 0 at nodes 1, 2
and 3 respectively, while Ny, N5 and NS are the shape functions for a bar element.

For simplicity, take 7, = 0, 7o = [, T3 = %l—i—al. Here [ is the bar length and « a parameter
that characterizes how far node 3 is away from the midpoint location ¥ = %l.

Show that the minimum o (minimal in absolute value sense) for which J = dz/d¢ van-
ishes at a point in the element are :i:% (the quarter points). Interpret this result as a

singularity by showing that the axial strain becomes infinite at an end point.

A geometric representation of the element considered is depicted in Figure (1).
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Fig. 1 — Quadratic bar element

For the given element, the shape functions are:
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And using expression (1), the geometric coordinate x can be approximated as:
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Then, the Jacobian can be found as follows:
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which vanishes for & = +1/4 and £ # 0, i.e. at the end nodes.
Moreover, using the expression given in equation (1), the displacement vector is defined as:

u = UlNl + u2N2 + U3N3

Considering that the strain ¢ is defined as ¢ = j—z, it can be obtained that:
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Since % =J vand J =0 for @« = £1/4 at the end points, the strain value becomes infinite.



Assignment 5.2 - 2-D Convergence

Extend the results obtained from the previous Exercise for a 9-node plane stress ele-
ment. The element is initially a perfect square, nodes 5,6,7,8 are at the midpoint of
the sides 1-2, 2-3, 3—4 and 4—1, respectively, and 9 at the center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This
result is important in the construction of “singular elements” for fracture mechanics.

A geometric representation of the element considered is depicted in Figure (2).
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Fig. 2 — Quadratic bar element

For the given element, the shapes functions can be found using the line-product method:
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Similar to the 1-D case, the geometric coordinates can be interpolated as:
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Furthermore, the Jacobian matrix J for the given problem is defined by the following expression:
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The partial derivatives of the shape functions have the following form:

T — i -DE-1 = - Dn-1)
Te A Nm- =+ nen -
T = DD = e+ D+
Ut RSV R AR
e G- =i -1
T m 3D T =g+ )
R RS (R S/
T m 3N =g
88—]? = —2¢(1—7n?)
0Ny

_ 2

Now, the case of a quadrilateral element of side [ with node 5 having been moved a distance +a
(See Figure (3)) will be considered. Thus, for node 2 of the element ({ =1, n = —1), the Jacobian
is equal to:
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Fig. 3 — Element with offset node 5

Hence, the determinant of the Jacobian vanishes for the following value of a:
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