Master of Science in Computational Mechanics

Assignment 5:
 Convergence requirements

Submitted By:
Mario Alberto Méndez Soto

Submitted To:
Prof. Miguel Cervera

Assignment 5.1-1-D Convergence

The isoparametric definition of the straight-node bar element in its local system \underline{x} is,

$$
\left[\begin{array}{l}
1 \tag{1}\\
\bar{x} \\
\bar{u}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3} \\
\bar{u}_{1} & \bar{u}_{2} & \bar{u}_{3}
\end{array}\right]\left[\begin{array}{c}
N_{1}^{e}(\xi) \\
N_{2}^{e}(\xi) \\
N_{3}^{e}(\xi)
\end{array}\right]
$$

Here ξ is the isoparametric coordinate that takes the values $-1,1$ and 0 at nodes 1,2 and 3 respectively, while N_{1}^{e}, N_{2}^{e} and N_{3}^{e} are the shape functions for a bar element.

For simplicity, take $\bar{x}_{1}=0, \bar{x}_{2}=l, \bar{x}_{3}=\frac{1}{2} l+\alpha l$. Here l is the bar length and α a parameter that characterizes how far node 3 is away from the midpoint location $\bar{x}=\frac{1}{2} l$.

Show that the minimum α (minimal in absolute value sense) for which $J=d \bar{x} / d \xi$ vanishes at a point in the element are $\pm \frac{1}{4}$ (the quarter points). Interpret this result as a singularity by showing that the axial strain becomes infinite at an end point.

A geometric representation of the element considered is depicted in Figure (1).

Fig. 1 - Quadratic bar element

For the given element, the shape functions are:

$$
\begin{gathered}
N_{1}=\frac{1}{2} \xi(\xi-1) \\
N_{2}=\frac{1}{2} \xi(\xi+1) \\
N_{3}=1-\xi^{2}
\end{gathered}
$$

And using expression (1), the geometric coordinate x can be approximated as:

$$
\begin{aligned}
x & =\bar{x}_{1} N_{1}+\bar{x}_{2} N_{2}+\bar{x}_{3} N_{3} \\
& =0 \cdot N_{1}+l \cdot \frac{1}{2} \xi(\xi+1)+\left(\frac{l}{2}+\alpha l\right) \cdot\left(1-\xi^{2}\right) \\
& =\frac{l}{2} \xi(\xi+1)+\left(\frac{l}{2}+\alpha l\right) \cdot\left(1-\xi^{2}\right)
\end{aligned}
$$

Then, the Jacobian can be found as follows:

$$
\begin{aligned}
J & =\frac{d \bar{x}}{d \xi} \\
& =\frac{l}{2}(\xi+1)+\frac{l}{2} \xi+\left(\frac{l}{2}+\alpha l\right)(-2 \xi) \\
& =\not \xi \xi+\frac{l}{2}-\not \xi \xi-2 \alpha l \xi \\
& =\frac{l}{2}-2 \alpha l \xi
\end{aligned}
$$

which vanishes for $\alpha= \pm 1 / 4$ and $\xi \neq 0$, i.e. at the end nodes.
Moreover, using the expression given in equation (1), the displacement vector is defined as:

$$
u=u_{1} N_{1}+u_{2} N_{2}+u_{3} N_{3}
$$

Considering that the strain ε is defined as $\varepsilon=\frac{d u}{d x}$, it can be obtained that:

$$
\begin{aligned}
\varepsilon & =u_{1} \frac{d N_{1}}{d x}+u_{2} \frac{d N_{2}}{d x}+u_{3} \frac{d N_{3}}{d x} \\
& =u_{1} \frac{d N_{1}}{d \xi} \cdot \frac{d \xi}{d x}+u_{2} \frac{d N_{2}}{d \xi} \cdot \frac{d \xi}{d x}+u_{3} \frac{d N_{3}}{d \xi} \cdot \frac{d \xi}{d x}
\end{aligned}
$$

Since $\frac{d \xi}{d x}=J^{-1}$ and $J=0$ for $\alpha= \pm 1 / 4$ at the end points, the strain value becomes infinite.

Assignment 5.2-2-D Convergence

Extend the results obtained from the previous Exercise for a 9 -node plane stress element. The element is initially a perfect square, nodes $5,6,7,8$ are at the midpoint of the sides $1-2,2-3,3-4$ and $4-1$, respectively, and 9 at the center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is important in the construction of "singular elements" for fracture mechanics.

A geometric representation of the element considered is depicted in Figure (2).

Fig. 2 - Quadratic bar element

For the given element, the shapes functions can be found using the line-product method:

$$
\begin{array}{rlrl}
N_{1} & =\frac{1}{4} \xi \eta(\xi-1)(\eta-1) & N_{2} & =\frac{1}{4} \xi \eta(\xi+1)(\eta-1) \\
N_{3} & =\frac{1}{4} \xi \eta(\xi+1)(\eta+1) & N_{4} & =\frac{1}{4} \xi \eta(\xi-1)(\eta+1) \\
N_{5} & =\frac{1}{2} \eta\left(1-\xi^{2}\right)(\eta-1) & N_{6} & =\frac{1}{2} \xi(\xi+1)\left(1-\eta^{2}\right) \\
N_{7} & =\frac{1}{2} \eta\left(1-\xi^{2}\right)(\eta+1) & N_{8} & =\frac{1}{2} \xi(\xi-1)\left(1-\eta^{2}\right) \\
N_{9}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)
\end{array}
$$

Similar to the 1-D case, the geometric coordinates can be interpolated as:

$$
x=\sum_{i=1}^{9} x_{i} N_{i} \quad y=\sum_{i=1}^{9} y_{i} N_{i}
$$

Furthermore, the Jacobian matrix \mathbf{J} for the given problem is defined by the following expression:

$$
\mathbf{J}=\left[\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{9} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{9} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{9} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{9} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right]
$$

The partial derivatives of the shape functions have the following form:

$$
\begin{aligned}
& \frac{\partial N_{1}}{\partial \xi}=\frac{1}{4} \eta(2 \xi-1)(\eta-1) \quad \frac{\partial N_{1}}{\partial \eta}=\frac{1}{4} \xi(\xi-1)(2 \eta-1) \\
& \frac{\partial N_{2}}{\partial \xi}=\frac{1}{4} \eta(2 \xi+1)(\eta-1) \quad \frac{\partial N_{2}}{\partial \eta}=\frac{1}{4} \xi(\xi+1)(2 \eta-1) \\
& \frac{\partial N_{3}}{\partial \xi}=\frac{1}{4} \eta(2 \xi+1)(\eta+1) \quad \frac{\partial N_{3}}{\partial \eta}=\frac{1}{4} \xi(\xi+1)(2 \eta+1) \\
& \frac{\partial N_{4}}{\partial \xi}=\frac{1}{4} \eta(2 \xi-1)(\eta+1) \quad \frac{\partial N_{4}}{\partial \eta}=\frac{1}{4} \xi(\xi-1)(2 \eta+1) \\
& \frac{\partial N_{5}}{\partial \xi}=-\xi \eta(\eta-1) \quad \frac{\partial N_{5}}{\partial \eta}=\frac{1}{2}\left(1-\xi^{2}\right)(2 \eta-1) \\
& \frac{\partial N_{6}}{\partial \xi}=\frac{1}{2}(2 \xi+1)\left(1-\eta^{2}\right) \quad \frac{\partial N_{6}}{\partial \eta}=-\xi \eta(\xi+1) \\
& \frac{\partial N_{7}}{\partial \xi}=-\xi \eta(\eta+1) \quad \frac{\partial N_{7}}{\partial \eta}=\frac{1}{2}\left(1-\xi^{2}\right)(2 \eta+1) \\
& \frac{\partial N_{8}}{\partial \xi}=\frac{1}{2}(2 \xi-1)\left(1-\eta^{2}\right) \quad \frac{\partial N_{8}}{\partial \eta}=-\xi \eta(\xi-1) \\
& \frac{\partial N_{9}}{\partial \xi}=-2 \xi\left(1-\eta^{2}\right) \\
& \frac{\partial N_{9}}{\partial \eta}=-2 \eta\left(1-\xi^{2}\right)
\end{aligned}
$$

Now, the case of a quadrilateral element of side l with node 5 having been moved a distance $\pm a$ (See Figure (3)) will be considered. Thus, for node 2 of the element $(\xi=1, \eta=-1)$, the Jacobian is equal to:

$$
\mathbf{J}(1,-1)=\left[\begin{array}{cc}
\frac{l}{2}-2 a & 0 \\
0 & \frac{l}{2}
\end{array}\right]
$$

Fig. 3 - Element with offset node 5

Hence, the determinant of the Jacobian vanishes for the following value of α :

$$
\begin{gathered}
|\mathbf{J}(1,-1)|=0 \\
\frac{l^{2}}{4}-l a=0 \\
a=\frac{l}{4}
\end{gathered}
$$

