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1 Assignment 5.1

If writing a relation between the coordinates of the nodes of an element and the Cartesian
coordinates, it is obtained that

$:N11'1+N2x2+N3$3 (1)

Therefore the shape functions are chosen such that N; must be a function which is unity at the
nodes. Specifically, the shape functions corresponding to three nodes are

N, = £(6-1)

2
N, = £(€2+1) (2)

Ny =—(§-1)(§+1)

Then, using the nodal coordinates in the local system (where z; = 0)

+1 l l
x:f(%)z—(g—l)(§+1)(2+al)=2(1+€)(2a—2§a+1) (3)
It is possible to see from equation that the coordinates of the nodes are obtained if the

value of £ are substituted. Now the derivative of with respect to ¢ is easily calculated.

de 1

e = 5(1—4a0 (1
Equation is clearly the Jacobian. The value of the Jacobian is positive on the whole domain
when 1/4 < a < 1/4, and to prove that equation may be plotted for the extreme cases
¢ = 1,—1 as a function of alpha. Figure [l shows that the jacobian is always positive for this
range of a, being it null at the extreme values. This proves that the minimum « in absolute
value that makes the Jacobian zero is & = 1/4 when £ = 1 and a = —1/4 when £ = —1, that
is, the extreme values. This may be directly seen from .

The strain displacement matrix is simply calculated as

B:J‘lﬁz 2
d¢  1—4a€

Now, equation (5)) allows us to define the quarter points as a singularity by noticing the following

o« For{ =1—limy,1uB=[00 o0 o0

o For{ = -1 —limy, 1uB=[c0 00 o]
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Figure 1: Variation of the Jacobian at the extreme points for various values of a.

2 Assignment 5.2

Now we are focused in analyzing a nine-noded quadratic Lagrange rectangle with the nodes
numbered as in Fig. 2]

Of course as a condition for completeness the shape functions must sum one at each node, and
zero at the others. The shape functions are described as

HE )W +m), 1=1357
Ny = %7712(772 —7)(1 = &%) + %f?(éﬂ &) —=n?), 1=2,4,6,8 (6)
=(1-)1-¢), 1=9

With &, = €&, M, = nm;. The nine nodes have the local coordinates shown in Table 1.

Again, if we consider [ to be the length of the square, the position of node 5 may be defined as
x5 = [I/2 + al, 0] if we consider the node 1 to be the origin of the global coordinates. Now the
procedure to follow which will be the value of o such that the determinant when £ =1,n = —1
vanishes. For that we need to compute the Jacobian first.

_[or oy or oy .
o o¢on  On

The purpose is to compute the Jacobian at node 2. For this a Matlab code is in order which
will simplify the task of calculating the derivatives. The coordinates of the nodes are
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Figure 2: Local numbering of the element.

T
X 0l 1 0 l24a 1 /2 0 l
X = (1=1,2,..,9) = (8)
Vi 0 01 1 0 2 1 /2 1/2
Now,
9 9
T = Zl’iNi, Yy = ZyiNi (9)
i=0 i=0

Eventually, the process is:
o Compute the shape functions with Table 1 and equation @
o Compute the mapping with equation @ and the nodal coordinates in equation ({)).

o Compute the jacobian with equation and substitute the particular local values of node
2,ie. £=1,n=—1.

e Find the value of o that minimizes the value of the determinant of the jacobian.

Eventually, once the operations have been computed (see Matlab code attached) the determi-
nant of the Jacobian at the second node is equal to

2
det(J):l4—ozl2—>det(J):O—>04:1/4 (10)



Node | & | mi
1 -1 -1
2 |0 -1
3 |1 -1
4 |1 0
5 |1 1
6 |0 1
711
8 |-1 0
9 |0 0

Table 1: Nodal local coordinates.

With this value of «, the coordinate of the node 5 would be x5 = [I/2 4+ al,0] = [I/2+ £,0] =

[%l, 0], which is actually the third quarter of the side 1-2. This is comparable with what was

found with the triangular case in which the value of alpha was 1/4.
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A Appendix:Code

syms xi eta alpha 1

%% SHAPE FUNCTIONS

N{1} = (xi-1)*(eta-1)*xi*eta/4; ok

N{2} = (xi+1)*(eta-1)*xi*eta/4; ok

N{3} = (xi+1)*(eta+1)*xixeta/4; ok

N{4} = (xi-1)*(eta+1)*xixeta/4; ok

N{5} = (xi+1)*(xi-1)*etax(1l - eta)/2; ok
N{6} = (xi+1)*xi*(eta+l)*(l-eta)/2; Jok
N{7} = -(xi+1)*(xi-1)*eta*x(l+eta)/2; ok
N{8} = -(xi-1)*xix*(eta-1)*(eta+1)/2;

N{9} = (1-xi~2)*(1-eta"2); Jok

/A% COORDINATES OF THE NODES
C = [0 0;

10;...

11;...

01;

1/2 + alpha*l O;...

11/2;...

1/2 1;...

01/2;

1/2 1/2];

A% PARAMETRIC MAPPING

sx = N{1}*C(1,1) + N{2}*C(2,1) + N{3}*C(3,1) + N{4}*C(4,1) + ...
N{5}*C(5,1) + N{6}*C(6,1) + N{7}*C(7,1) + N{8}*C(8,1) + N{9}*C(9,1);

sy = N{1}*C(1,2) + N{2}*C(2,2) + N{3}*C(3,2) + N{4}*C(4,2) + ...
N{6}*C(5,2) + N{6}*C(6,2) + N{7}*C(7,2) + N{8}*C(8,2) + N{9}*C(9,2);

//s COMPUTATION OF THE JACOBIAN

A = diff(sx,xi); B = diff(sy,xi);
C = diff(sx,eta); D = diff(sy,eta);
J =T[A B; CD]; detJ = det(J);

47 COMPUTATION OF THE DETERMINANT OF THE JACOBIAN

detJ = subs(detJ,xi,1);

detJ = subs(detJ,eta,-1);

a = solve(detJ == 0,alpha); /Value that we seek-> alpha = 1/4
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