
Universitat Politècnica de Catalunya

Computational Solid Mechanics and Dynamics
Master’s Degree in Numerical Methods in Engineering

On ’Convergence Requirements’

Author:
Pau Márquez

Supervisor:
Prof. M. Cervera

Academic Year 2019-2020

Contents

1 Assignment 5.1 1

2 Assignment 5.2 2

A Appendix:Code 5



1 Assignment 5.1
If writing a relation between the coordinates of the nodes of an element and the Cartesian
coordinates, it is obtained that

x = N1x1 +N2x2 +N3x3 (1)

Therefore the shape functions are chosen such that Ni must be a function which is unity at the
nodes. Specifically, the shape functions corresponding to three nodes are


N1 = ξ(ξ−1)

2
N2 = ξ(ξ+1)

2
N3 = −(ξ − 1)(ξ + 1)

(2)

Then, using the nodal coordinates in the local system (where x1 = 0)

x = ξ(ξ + 1)
2 l − (ξ − 1)(ξ + 1)( l2 + αl) = l

2(1 + ξ)(2α− 2ξα + 1) (3)

It is possible to see from equation (3) that the coordinates of the nodes are obtained if the
value of ξ are substituted. Now the derivative of (3) with respect to ξ is easily calculated.

dx

dξ
= l

2(1− 4αξ) (4)

Equation (4) is clearly the Jacobian. The value of the Jacobian is positive on the whole domain
when 1/4 < α < 1/4, and to prove that equation (4) may be plotted for the extreme cases
ξ = 1,−1 as a function of alpha. Figure 1 shows that the jacobian is always positive for this
range of α, being it null at the extreme values. This proves that the minimum α in absolute
value that makes the Jacobian zero is α = 1/4 when ξ = 1 and α = −1/4 when ξ = −1, that
is, the extreme values. This may be directly seen from (4).

The strain displacement matrix is simply calculated as

B = J−1dN
dξ

= 2
1− 4αξ [ξ − 1/2, ξ + 1/2, −2ξ] (5)

Now, equation (5) allows us to define the quarter points as a singularity by noticing the following

• For ξ = 1 −→ limα→1/4 B = [∞ ∞ ∞]

• For ξ = −1 −→ limα→−1/4 B = [∞ ∞ ∞]
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Figure 1: Variation of the Jacobian at the extreme points for various values of α.

2 Assignment 5.2
Now we are focused in analyzing a nine-noded quadratic Lagrange rectangle with the nodes
numbered as in Fig. 2.

Of course as a condition for completeness the shape functions must sum one at each node, and
zero at the others. The shape functions are described as


Nl = 1

4(ξ2 + ξl)(η2 + ηl), l = 1, 3, 5, 7
Nl = 1

2η
2
l (η2 − ηl)(1− ξ2) + 1

2ξ
2
l (ξ2 − ξl)(1− η2), l = 2, 4, 6, 8

Nl = (1− η2)(1− ξ2), l = 9
(6)

With ξl = ξξl, ηl = ηηl. The nine nodes have the local coordinates shown in Table 1.

Again, if we consider l to be the length of the square, the position of node 5 may be defined as
x5 = [l/2 + αl, 0] if we consider the node 1 to be the origin of the global coordinates. Now the
procedure to follow which will be the value of α such that the determinant when ξ = 1, η = −1
vanishes. For that we need to compute the Jacobian first.

J =
[
∂x

∂ξ

∂y

∂ξ
; ∂x
∂η

∂y

∂η

]
(7)

The purpose is to compute the Jacobian at node 2. For this a Matlab code is in order which
will simplify the task of calculating the derivatives. The coordinates of the nodes are
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Figure 2: Local numbering of the element.

X =

xi

yi

 (i = 1, 2, ..., 9) =

0 l l 0 l/2 + αl l l/2 0 l

0 0 l l 0 l/2 l l/2 l/2


T

(8)

Now,

x =
9∑
i=0

xiNi, y =
9∑
i=0

yiNi (9)

Eventually, the process is:

• Compute the shape functions with Table 1 and equation (6).

• Compute the mapping with equation (9) and the nodal coordinates in equation (8).

• Compute the jacobian with equation (7) and substitute the particular local values of node
2, i.e. ξ = 1, η = −1.

• Find the value of α that minimizes the value of the determinant of the jacobian.

Eventually, once the operations have been computed (see Matlab code attached) the determi-
nant of the Jacobian at the second node is equal to

det(J) = l2

4 − αl
2 −→ det(J) = 0 −→ α = 1/4 (10)
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Node ξi ηi

1 -1 -1

2 0 -1

3 1 -1

4 1 0

5 1 1

6 0 1

7 -1 1

8 -1 0

9 0 0

Table 1: Nodal local coordinates.

With this value of α, the coordinate of the node 5 would be x5 = [l/2 + αl, 0] = [l/2 + l
4 , 0] =

[3l
4 , 0], which is actually the third quarter of the side 1-2. This is comparable with what was
found with the triangular case in which the value of alpha was 1/4.
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A Appendix:Code

1 syms xi eta alpha l
2

3 %% SHAPE FUNCTIONS
4 N{1} = (xi-1)*(eta-1)*xi*eta/4;%ok
5 N{2} = (xi+1)*(eta-1)*xi*eta/4;%ok
6 N{3} = (xi+1)*(eta+1)*xi*eta/4;%ok
7 N{4} = (xi-1)*(eta+1)*xi*eta/4;%ok
8 N{5} = (xi+1)*(xi-1)*eta*(1 - eta)/2; %ok
9 N{6} = (xi+1)*xi*(eta+1)*(1-eta)/2; %ok

10 N{7} = -(xi+1)*(xi-1)*eta*(1+eta)/2;%ok
11 N{8} = -(xi-1)*xi*(eta-1)*(eta+1)/2;
12 N{9} = (1-xi^2)*(1-eta^2); %ok
13

14 %% COORDINATES OF THE NODES
15 C = [0 0; ...
16 l 0;...
17 l l;...
18 0 l; ...
19 l/2 + alpha*l 0;...
20 l l/2;...
21 l/2 l;...
22 0 l/2; ...
23 l/2 l/2];
24

25 %% PARAMETRIC MAPPING
26 sx = N{1}*C(1,1) + N{2}*C(2,1) + N{3}*C(3,1) + N{4}*C(4,1) + ...
27 N{5}*C(5,1) + N{6}*C(6,1) + N{7}*C(7,1) + N{8}*C(8,1) + N{9}*C(9,1);
28 sy = N{1}*C(1,2) + N{2}*C(2,2) + N{3}*C(3,2) + N{4}*C(4,2) + ...
29 N{5}*C(5,2) + N{6}*C(6,2) + N{7}*C(7,2) + N{8}*C(8,2) + N{9}*C(9,2);
30

31 %% COMPUTATION OF THE JACOBIAN
32 A = diff(sx,xi); B = diff(sy,xi);
33 C = diff(sx,eta); D = diff(sy,eta);
34

35 J = [A B; C D]; detJ = det(J);
36

37 %% COMPUTATION OF THE DETERMINANT OF THE JACOBIAN
38 detJ = subs(detJ,xi,1);
39 detJ = subs(detJ,eta,-1);
40 a = solve(detJ == 0,alpha); %Value that we seek-> alpha = 1/4
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