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 Assignment 5.1 : 

 

Solution: 

�� = 0 ,�� = � ,�� = �
�

�
+ ���    and     �� = 1 ,�� = − 1 ,�� = 0 

The Shape functions for 1D bar element with 3 nodes are: 

�� =  
(����)(����)

(�����)(�����)
   ,  �� =  

(����)(����)

(�����)(�����)
   ,  �� =  

(����)(����)

(�����)(�����)
  

So, after substituting the values, the shape functions become: 
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�(���)

�
  ,     �� =  

�(���)

�
 ,   �� =  1 − ��  

� =  ��(�)�� + ��(�)�� + ��(�)�� 

So,                                  �=
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���
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2
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2
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2
+ ���− 2�(

1

2
+ �)� 
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�

2
�+ ��− ��− 2��� 

J =  �
�

�
− 2���� 

 For J to vanish, the value of J should be zero. Hence, equating the the above obtained 

equation of J to zero, we get:  

J =  �
�

�
− 2���� = 0 

∴ �
1

2
− 2����= 0 
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∴ 
1

2
= 2�� 

From this, we get that � =  ±
�

�
  

Hence, the minimum value of � for which the Jacobian vanishes is � =  ±
�

�
 

The axial strain equation is given by, 

� =
��

��
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��

��
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2
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���

��

���

��

���

��
�  

� =  
�

�
�

�
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 �(�−
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�

�
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But, we know that at � = ±
�

�
 the Jacobian becomes zero, hence the axial strain tends to 

infinity as shown below, 

� =  
1

0
 �(�−

1

2
 ) , ��+

1

2
 �, −2�� 

� =  ∞�(�−
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�
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�

�
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Thus, the strain becomes infinite at the end points when we substitute the values 

 � =  ± 1 and � = ±
�

�
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 Assignment 5.2 : 

 

                            
Solution: 

The isoparametric definition of this element is given by, 

⎣
⎢
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The Shape functions for 9 noded quadrilateral element are given by, 
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The derivatives of these shape functions respectively are, 
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The Jacobian is given by, 
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The co-ordinates of x and y at different nodes for the given element are, 

Nodes 1 2 3 4 5 6 7 8 9 
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So, solving for node 2, after substituting the respective values of derivatives of shape 

functions, and the x and y co-ordinate values, with � = 1 ��� � = −1, the Jacobian 

becomes, 
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For the Jacobian to vanish, the determinant should become zero, so equating the determinant to 

zero,  

�
�

2
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2
� = 0 

∴ �
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4
− ���� = 0 

∴ � =
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So, we can observe that the value of � comes to be 
�

�
 when the Jacobian reduces to 0. This 

is same as the one done in earlier exercise.  

Thus, in a quadratic element, when the middle node is at a distance of 
�

�
 from its end nodes, 

the Jacobian becomes singular and thus vanishes. 

 

 

 Discussions: 
 The main idea of the Jacobian is that, it relates the natural co-ordinates of a geometry 

with the computational co-ordinates. The Jacobian should be positive always in order 

for the mapping to exist. The Jacobian becomes singular at quarter points between 2 

nodes for a 3 noded quadratic bar element.  

 The important parameters required for convergence are consistency (completeness) 

and stability (positive Jacobian). Both of which are reflected in the above exercise. 

The sum of all shape functions equalling 1 establishes completeness and the positive 

value of Jacobian ensures that the solution is valid and stable.  


