# Computational Structural Mechanics \& Dynamics 

Assignment 5<br>Convergence Requirements

Submitted By: Kiran Kolhe
$16^{\text {th }}$ March 2020

## Assignment 5.1 :

The isoparametric definition of the straight-node bar element in its local system $\underline{x}$ is,

$$
\left[\begin{array}{l}
1 \\
\bar{x} \\
\bar{u}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3} \\
\bar{u}_{1} & \bar{u}_{2} & \bar{u}_{3}
\end{array}\right]\left[\begin{array}{l}
N_{1}^{e}(\xi) \\
N_{2}^{e}(\xi) \\
N_{3}^{e}(\xi)
\end{array}\right]
$$

Here $\xi$ is the isoparametric coordinate that takes the values $-1,1$ and 0 at nodes 1,2 and 3 respectively, while $\mathrm{N}_{1}{ }_{1}, \mathrm{~N}_{2}{ }_{2}$ and $\mathrm{N}_{3}{ }_{3}$ are the shape functions for a bar element.

For simplicity, take $\bar{x}_{1}=0, \bar{x}_{2}=L, \bar{x}_{3}=\frac{1}{2} l+\alpha l$. Here 1 is the bar length and $\alpha$ a parameter that characterizes how far node 3 is away from the midpoint location $\bar{x}=\frac{1}{2} l$.

Show that the minimum $\alpha$ (minimal in absolute value sense) for which $J=d \bar{x} / d \xi$ vanishes at a point in the element are $\pm 1 / 4$ (the quarter points). Interpret this result as a singularity by showing that the axial strain becomes infinite at an end point.

## Solution:

$x_{1}=0, x_{2}=l, x_{3}=\left(\frac{1}{2}+\alpha\right) l \quad$ and $\quad \xi_{1}=1, \xi_{2}=-1, \xi_{3}=0$
The Shape functions for 1D bar element with 3 nodes are:
$N_{1}=\frac{\left(\xi_{2}-\xi\right)\left(\xi_{3}-\xi\right)}{\left(\xi_{2}-\xi_{1}\right)\left(\xi_{3}-\xi_{1}\right)}, N_{2}=\frac{\left(\xi_{3}-\xi\right)\left(\xi_{1}-\xi\right)}{\left(\xi_{3}-\xi_{2}\right)\left(\xi_{1}-\xi_{2}\right)}, N_{3}=\frac{\left(\xi_{1}-\xi\right)\left(\xi_{3}-\xi\right)}{\left(\xi_{1}-\xi_{3}\right)\left(\xi_{2}-\xi_{3}\right)}$
So, after substituting the values, the shape functions become:
$N_{1}=\frac{\xi(\xi-1)}{2}, \quad N_{2}=\frac{\xi(\xi+1)}{2}, \quad N_{3}=1-\xi^{2}$

$$
x=N_{1}(\xi) x_{1}+N_{2}(\xi) x_{2}+N_{3}(\xi) x_{3}
$$

So,

$$
\begin{array}{r}
J=\frac{d x}{d \xi}=\frac{d N_{1}}{d \xi} x_{1}+\frac{d N_{2}}{d \xi} x_{2}+\frac{d N_{3}}{d \xi} x_{3} \\
=0+\left(\frac{1}{2}+\xi\right) l-2 \xi\left(\frac{1}{2}+\alpha\right) l \\
=0+\left(\frac{1}{2}+\xi\right) l-2 \xi\left(\frac{1}{2}+\alpha\right) l \\
=\left(\frac{l}{2}\right)+\xi l-\xi l-2 \xi \alpha l \\
J=\left(\frac{1}{2}-2 \xi \alpha\right) l
\end{array}
$$

- For J to vanish, the value of J should be zero. Hence, equating the the above obtained equation of J to zero, we get:

$$
\begin{aligned}
& J=\left(\frac{1}{2}-2 \xi \alpha\right) l=0 \\
& \therefore\left(\frac{1}{2}-2 \xi \alpha\right) l=0
\end{aligned}
$$

$$
\therefore \frac{1}{2}=2 \xi \alpha
$$

From this, we get that $\alpha= \pm \frac{1}{4}$
Hence, the minimum value of $\alpha$ for which the Jacobian vanishes is $\alpha= \pm \frac{1}{4}$
The axial strain equation is given by,
$B=\frac{d N}{d x}=J^{-1} \frac{d N}{d \xi}$
$B=\frac{1}{\left(\frac{1}{2}-2 \xi \alpha\right)_{l}}\left[\begin{array}{lll}\frac{d N_{1}}{d \xi} & \frac{d N_{2}}{d \xi} & \frac{d N_{3}}{d \xi}\end{array}\right]$
$B=\frac{1}{\left(\frac{1}{2}-2 \xi \alpha\right) l}\left[\left(\xi-\frac{1}{2}\right), \quad\left(\xi+\frac{1}{2}\right), \quad-2 \xi\right]$
But, we know that at $\alpha= \pm \frac{1}{4}$ the Jacobian becomes zero, hence the axial strain tends to infinity as shown below,

$$
\left.\begin{array}{rl}
B & =\frac{1}{0}\left[\left(\xi-\frac{1}{2}\right),\right. \\
B & \left(\xi+\frac{1}{2}\right),
\end{array}-2 \xi\right]\left[\begin{array}{lll}
\left(\xi-\frac{1}{2}\right), & \left(\xi+\frac{1}{2}\right), & -2 \xi]
\end{array}\right.
$$

Thus, the strain becomes infinite at the end points when we substitute the values $\xi= \pm 1$ and $\alpha= \pm \frac{1}{4}$

## Assignment 5.2 :

Extend the results obtained from the previous Exercise for a 9 -node plane stress element. The element is initially a perfect square, nodes $5,6,7,8$ are at the midpoint of the sides $1-2,2-3,3-4$ and $4-1$, respectively, and 9 at the center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is important in the construction of "singular elements" for fracture mechanics.


## Solution:

The isoparametric definition of this element is given by,

$$
\left[\begin{array}{c}
1 \\
x \\
y \\
u_{x} \\
u_{y}
\end{array}\right]=\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} & y_{9} \\
u_{x 1} & u_{x 2} & u_{x 3} & u_{x 4} & u_{x 5} & u_{x 6} & u_{x 7} & u_{x 8} & u_{x 9} \\
u_{y 1} & u_{y 2} & u_{y 3} & u_{y 4} & u_{y 5} & u_{y 6} & u_{y 7} & u_{y 8} & u_{y 9}
\end{array}\right]\left[\begin{array}{l}
N_{1} \\
N_{2} \\
N_{3} \\
N_{4} \\
N_{5} \\
N_{6} \\
N_{7} \\
N_{8} \\
N_{9}
\end{array}\right]
$$

The Shape functions for 9 noded quadrilateral element are given by,
$N_{1}=\frac{1}{4}(\xi-1)(\eta-1) \xi \eta \quad N_{5}=\frac{1}{2}\left(1-\xi^{2}\right)(\eta-1) \eta \quad N_{9}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)$
$N_{2}=\frac{1}{4}(\xi+1)(\eta-1) \xi \eta \quad N_{6}=\frac{1}{2}(\xi+1)\left(1-\eta^{2}\right) \xi$
$N_{3}=\frac{1}{4}(\xi+1)(\eta+1) \xi \eta \quad N_{7}=\frac{1}{2}\left(1-\xi^{2}\right)(\eta+1) \eta$
$N_{4}=\frac{1}{4}(\xi-1)(\eta+1) \xi \eta \quad N_{8}=\frac{1}{2}(\xi-1)\left(1-\eta^{2}\right) \xi$

The derivatives of these shape functions respectively are,

$$
\begin{array}{ll}
\frac{\partial N_{1}}{\partial \xi}=\frac{1}{4}(2 \xi-1)(\eta-1) \eta & \frac{\partial N_{1}}{\partial \eta}=\frac{1}{4}(2 \eta-1)(\xi-1) \xi \\
\frac{\partial N_{2}}{\partial \xi}=\frac{1}{4}(2 \xi+1)(\eta-1) \eta & \frac{\partial N_{2}}{\partial \eta}=\frac{1}{4}(\xi+1)(2 \eta-1) \xi \\
\frac{\partial N_{3}}{\partial \xi}=\frac{1}{4}(2 \xi+1)(\eta+1) \eta & \frac{\partial N_{3}}{\partial \eta}=\frac{1}{4}(\xi+1)(2 \eta+1) \xi \\
\frac{\partial N_{4}}{\partial \xi}=\frac{1}{4}(2 \xi-1)(\eta+1) \eta & \frac{\partial N_{4}}{\partial \eta}=\frac{1}{4}(\xi-1)(2 \eta+1) \xi \\
\frac{\partial N_{5}}{\partial \xi}=-\xi \eta(\eta-1) & \frac{\partial N_{5}}{\partial \eta}=\frac{1}{2}(2 \eta-1)\left(1-\xi^{2}\right)
\end{array}
$$

$\frac{\partial N_{6}}{\partial \xi}=\frac{1}{2}(2 \xi+1)\left(1-\eta^{2}\right)$

$$
\frac{\partial N_{6}}{\partial \eta}=-\xi \eta(\xi+1)
$$

$\frac{\partial N_{7}}{\partial \xi}=-\xi \eta(\eta+1)$

$$
\frac{\partial N_{7}}{\partial \eta}=\frac{1}{2}(2 \eta+1)\left(1-\xi^{2}\right)
$$

$\frac{\partial N_{8}}{\partial \xi}=\frac{1}{2}(2 \xi-1)\left(1-\eta^{2}\right)$
$\frac{\partial N_{8}}{\partial \eta}=-\xi \eta(\xi-1)$
$\frac{\partial N_{9}}{\partial \xi}=-2 \xi\left(1-\eta^{2}\right)$
$\frac{\partial N_{9}}{\partial \eta}=-2 \eta\left(1-\xi^{2}\right)$
The Jacobian is given by,

$$
J=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

$$
\frac{\partial x}{\partial \xi}=\sum_{i=1}^{9} x_{i} \frac{\partial N_{i}}{\partial \xi}, \quad \frac{\partial y}{\partial \xi}=\sum_{i=1}^{9} y_{i} \frac{\partial N_{i}}{\partial \xi}, \quad \frac{\partial x}{\partial \eta}=\sum_{i=1}^{9} x_{i} \frac{\partial N_{i}}{\partial \eta}, \quad \frac{\partial y}{\partial \eta}=\sum_{i=1}^{9} y_{i} \frac{\partial N_{i}}{\partial \eta}
$$

The co-ordinates of $x$ and $y$ at different nodes for the given element are,

| Nodes | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| $\mathbf{x}$ | $-\frac{l}{2}$ | $\frac{l}{2}$ | $\frac{l}{2}$ | $-\frac{l}{2}$ | 0 | $\frac{l}{2}$ | 0 | $-\frac{l}{2}$ | 0 |
| $\mathbf{y}$ | $-\frac{l}{2}$ | $-\frac{l}{2}$ | $\frac{l}{2}$ | $\frac{l}{2}$ | $-\frac{l}{2}$ | 0 | $\frac{l}{2}$ | 0 | 0 |

So, solving for node 2 , after substituting the respective values of derivatives of shape functions, and the x and y co-ordinate values, with $\xi=1$ and $\eta=-1$, the Jacobian becomes,

$$
\begin{gathered}
J=\left[\begin{array}{cc}
\sum_{i=1}^{9} x_{i} \frac{\partial N_{i}}{\partial \xi} & \sum_{i=1}^{9} y_{i} \frac{\partial N_{i}}{\partial \xi} \\
\sum_{i=1}^{9} x_{i} \frac{\partial N_{i}}{\partial \eta} & \sum_{i=1}^{9} y_{i} \frac{\partial N_{i}}{\partial \eta}
\end{array}\right] \\
J=\left[\begin{array}{cc}
\frac{l}{2}-2 \alpha l & 0 \\
0 & \frac{l}{2}
\end{array}\right]
\end{gathered}
$$

For the Jacobian to vanish, the determinant should become zero, so equating the determinant to zero,

$$
\begin{gathered}
\left(\frac{l}{2}-2 \alpha l\right) *\left(\frac{l}{2}\right)=0 \\
\therefore\left(\frac{l^{2}}{4}-\alpha l^{2}\right)=0 \\
\therefore \alpha=\frac{1}{4}
\end{gathered}
$$

So, we can observe that the value of $\alpha$ comes to be $\frac{1}{4}$ when the Jacobian reduces to 0 . This is same as the one done in earlier exercise.

Thus, in a quadratic element, when the middle node is at a distance of $\frac{1}{4}$ from its end nodes, the Jacobian becomes singular and thus vanishes.

## Discussions:

- The main idea of the Jacobian is that, it relates the natural co-ordinates of a geometry with the computational co-ordinates. The Jacobian should be positive always in order for the mapping to exist. The Jacobian becomes singular at quarter points between 2 nodes for a 3 noded quadratic bar element.
- The important parameters required for convergence are consistency (completeness) and stability (positive Jacobian). Both of which are reflected in the above exercise. The sum of all shape functions equalling 1 establishes completeness and the positive value of Jacobian ensures that the solution is valid and stable.

