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Assignment 5

Assignment 5.1

The isoparametric definition of the straightnode bar element in its local system x is,

1 1 1 1 N¢(€)
T |=|T1 T2 Tg N5 (€) (1)
ﬂ U Uy s NE(€)

Here £ is the isoparametric coordinate that takes the values —1, 1 and 0 at nodes 1, 2 and 3 respectively, while
N7, NS and N are the shape functions for a bar element.

For simplicity, take £y = 0, Ty = [, T3 = %l + al. Here [ is the bar length and o a parameter that char-
acterizes how far node 3 is away from the midpoint location = %l.

Show that the minimum a (minimal in absolute value sense) for which J = dz/d{ vanishes at a point in
the element are =1/4 (the quarter points). Interpret this result as a singularity by showing that the axial strain

becomes infinite at an end point.

Answer

Figure 1: 1D Isoparametric element.

Axial displacement:
u = N1(§ur + No(§)uz + N3(§)us (2)

and the x coordinate of any point within the element:

x:Nl(f)xl+N2(£)w2+N3(§):c3 (3)
The shape functions for the element:
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The axial strain is given by:
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taking derivative of shape function with respect to &:
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taking derivative of x coordinate:
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Relationship between dz and d€ in terms of the three nodal coordinates can be given as:
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The strains at the first and second node are:

e o= (6 0) () = (00-3) () “ e a0

ON, 06 1 2 B 1 2 3
9¢ dx (€+ 2) (z —4al§) - ((1) * 2) (z —4al(1)> T I(1 - 4a)
For values,

Node 1: £ = —1 with o = —1/4, Node 2: £ =1 with a = 1/4

Conclusion: At a@ = £1/4 , the strain value becomes infinite.

Assignment 5.2

Extend the results obtained from the previous Exercise for a 9-node plane stress element. The element is
initially a perfect square, nodes 5, 6 ,7 8 are at the midpoint of the sides 1-2, 2-3, 3-4 and 4-1, respectively, and
9 at the center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is important
in the construction of singular elements for fracture mechanics.

Answer
Considering a plane stress quadrilateral element with 9 nodes

Figure 2: 2D Isoparametric quadrilateral element.

Formulation of the approximate solution,
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The shape functions of nodes :
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Differentiating with respect to the quadrilateral coordinates:
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The Jacobian matrix can be given by,

Components of Jacobian matrix:
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For node 2, (¢,n7) = (1,—1):

J(En) =

The determinant of the Jacobian:

Which is similar to to 1D element.
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