Computational Structural Mechanics and Dynamics

Master of Science in Computational Mechanics Spring Semester 2018

Homework 5

Juan Diego Iberico Leonardo

Problem 5.1

Consider a three-node bar element referred to the natural coordinate ξ. The two end nodes and the mid node are identified as 1,2 and 3 respectively. The natural coordinates of nodes 1,2 and 3 are $\xi=-1, \xi=1$ and $\xi=0$, respectively. The variation of the shape functions $N_{1}(\xi), N_{2}(\xi)$ and $N_{3}(\xi)$ is sketched in the figure below. These functions must be quadratic polynomials in ξ :

$$
N_{1}^{e}(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2} \quad N_{2}^{e}(\xi)=b_{0}+b_{1} \xi+b_{2} \xi^{2} \quad N_{3}^{e}(\xi)=c_{0}+c_{1} \xi+c_{2} \xi^{2}
$$

(a) Determine the coefficients $a 0, \ldots, c 2$ using the node value conditions depicted in figure. For example $N_{1}^{e}=1$ for $\xi=1$ and 0 for the rest of natural coordinates. The rest of the nodes follow the same scheme.

$$
\begin{array}{ccc}
N_{1}^{e}(-1)=a_{0}-a_{1}+a_{2}=1 & N_{2}^{e}(-1)=b_{0}-b_{1}+b_{2}=0 & N_{3}^{e}(-1)=c_{0}-c_{1}+c_{2}=0 \\
N_{1}^{e}(0)=a_{0}=0 & N_{2}^{e}(0)=b_{0}=0 & N_{3}^{e}(0)=c_{0}=1 \\
N_{1}^{e}(+1)=a_{0}+a_{1}+a_{2}=0 & N_{2}^{e}(+1)=b_{0}+b_{1}+b_{2}=1 & N_{3}^{e}(+1)=c_{0}+c_{1}+c_{2}=0
\end{array}
$$

Solving the linear system we can know the values for $a 0, \ldots, c 2$:

$$
N_{1}^{e}(\xi)=\frac{1}{2} \xi(1-\xi) \quad N_{2}^{e}(\xi)=\frac{1}{2} \xi(1+\xi) \quad N_{3}^{e}(\xi)=1-\xi^{2}
$$

(b) Verify that their sum is identically one.

$$
N_{1}+N_{2}+N_{3}=\frac{1}{2} \xi-\frac{1}{2} \xi+\frac{1}{2} \xi^{2}+\frac{1}{2} \xi^{2}-\xi^{2}+1=1
$$

(c) Calculate their derivatives respect to the natural coordinates.

$$
\frac{\partial N_{1}}{\partial \xi}=\xi-\frac{1}{2} \quad \frac{\partial N_{2}}{\partial \xi}=\xi+\frac{1}{2} \quad \frac{\partial N_{3}}{\partial \xi}=2 \xi
$$

Problem 5.2

A five node quadrilateral element has the nodal configuration shown if the figure with two perspective views of N_{1}^{e} and N_{5}^{e}. Find five shape functions $N_{i}^{e}, i=1, \ldots, 5$ that satisfy compatibility and also verify that their sum is unity.

- First of all, the shape function N_{5} is obtained by construction as:

$$
N_{5}=C_{5} L_{12} L_{23} L_{34} L_{41} \quad \Longrightarrow \quad C_{5}(1-\xi)(1-\eta)(1+\xi)(1+\eta)
$$

- Substituting the coordinates $(0,0)$ corresponding with N_{5} location; the value of C_{5} is found as 1, arising the final shape-function:

$$
N_{5}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)
$$

- The given shape-functions for the corner nodes are the following:
$N_{1}=\frac{1}{4}(1-\xi)(1-\eta) \quad N_{2}=\frac{1}{4}(1+\xi)(1-\eta) \quad N_{3}=\frac{1}{4}(1+\xi)(1+\eta) \quad N_{4}=\frac{1}{4}(1-\xi)(1+\eta)$
- It is obtained a general shape function for all the nodes of the element:

$$
N_{i}=\frac{1}{4}\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right)+\alpha N_{5}
$$

- The value of α can be found substituting the coordinates of node $5(0,0)$ into any of the shape functions and equalize to zero. For instance, substitution of $\xi=\eta=0$ in N_{1} yields:

$$
\begin{align*}
N_{1} & =\frac{1}{4}(1-\xi)(1-\eta)+\alpha\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \tag{1}\\
& =\frac{1}{4}+\alpha=0 \quad \Longrightarrow \quad \alpha=-\frac{1}{4} \tag{2}
\end{align*}
$$

- In addition, the summation of all shape functions is equal to 1:
$N_{1}+N_{2}+N_{3}+N_{4}+N_{5}=\frac{1}{4}(1-\xi)(1-\eta)+\frac{1}{4}(1+\xi)(1-\eta)+\frac{1}{4}(1+\xi)(1+\eta)+\frac{1}{4}(1-\xi)(1+\eta)+4 \alpha N_{5}+N_{5}$
$\Longrightarrow \frac{1}{4}(1-\xi-\eta+\xi \eta)+\frac{1}{4}(1+\xi-\eta-\xi \eta)+\frac{1}{4}(1+\xi+\eta+\xi \eta)+\frac{1}{4}(1-\xi+\eta-\xi \eta)-N_{5}+N_{5}=1$

Problem 5.3

Which minimum integration rules of Gauss-product type gives a rank sufficient stiffness matrix for these elements:
Before start computing the gauss points we are going to define the following values, taking account we are in 3D space.

$$
\begin{align*}
n_{F} & =3 n & & \text { number of element DoF } \tag{3}\\
n_{R} & =6 & & \text { number of independent rigid body modes } \tag{4}\\
n_{E} & =6 & & \text { order of } E \text { stress }- \text { strain matrix } \tag{5}\\
n_{G} & = & & \text { number of Gauss points in integration rule for } K \tag{6}\\
r & = & & \text { actual rank stiffness matrix } \tag{7}
\end{align*}
$$

1. the 8 -node hexahedron

$$
r_{\min }=18 \quad d=0 \quad \text { with } \mathbf{3} \text { Gauss points }
$$

2. the 20 -node hexahedron

$$
r_{\text {min }}=54 \quad d=0 \quad \text { with } \mathbf{9} \text { Gauss points }
$$

3. the 27 -node hexahedron

$$
r_{\min }=75 \quad d=0 \quad \text { with } \mathbf{1 3} \text { Gauss points }
$$

4. the 64 -node hexahedron

$$
r_{\text {min }}=186 \quad d=0 \quad \text { with } \mathbf{3 1} \text { Gauss points }
$$

