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1 1st Question

According to the isoparametric representation, the geometry is interpolated using the same shape func-
tions as the unknowns. For 1d quadratic elements, the geometric representation is as follows (x1 = 0, x2 =
L, x3 = 0.5L+ αL):
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The Jacobian is defined as:
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The minimum α which makes the Jacobian vanishes, occurs at ζ = ±1
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The strain is calculated as follows
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J = 0 at the end points, therefore, the strain tends to infinity which represents a singularity.

2 2nd Question

Same process is used for the 9-node quadrilateral element. A MATLAB code is implemented to show
this result.
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The Jacobian in 2d is a matrix calculated as follows:
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For a 2d element with x from [0,1], y from [0,1], the Jacobian determinant is then calculated at node 2

(ζ = 1, η = −1), we find that when node 5 is moved towards node 2 till it’s halfway between the original
location and node 2 (x=0.75), the Jacobian vanishes
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3 MATLAB code

syms z i

N1= 0 .25∗ ( z−1)∗( i −1)∗z∗ i ;
N2= −0.25∗ z∗(1+z )∗ i ∗(1− i ) ;
N3= 0.25∗ z∗(1+z )∗(1+ i )∗ i ;
N4=−0.250∗1∗(1−z )∗(1+ i )∗ i ;
N5= −0.5∗(1+z )∗(1− z )∗(1− i )∗ i ;
N6= 0.5∗ z ∗( z+1)∗(1+ i )∗(1− i ) ;
N7= −0.5∗(1−z ˆ2)∗(1+ i )∗ i ;
N8= −0.5∗ z∗(1−z )∗(1− i )∗ i ;
N9= (1−z ˆ2)∗(1− i ˆ 2 ) ;

x = 0∗N1+1∗N2+1∗N3+0∗N4+0.75∗N5+1∗N6+0.5∗N7+0∗N8+0.5∗N9 ;
y = 0∗N1+0∗N2+1∗N3+1∗N4+0∗N5+0.5∗N6+1∗N7+0.5∗N8+0.5∗N9 ;

J=[ d i f f (x , z ) , d i f f (y , z ) ; d i f f (x , i ) , d i f f (y , i ) ] ;
subs ( det ( J ) , [ z , i ] , [ 1 , −1])

>> p2CSMD
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