CSMD HW 5

Hanna, John

1 1st Question

According to the isoparametric representation, the geometry is interpolated using the same shape functions as the unknowns. For 1d quadratic elements, the geometric representation is as follows ($x_{1}=0, x_{2}=$ $\left.L, x_{3}=0.5 L+\alpha L\right)$:

$$
\begin{gathered}
x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3} \\
=\frac{1}{2} \zeta(1-\zeta) x_{1}+\frac{1}{2} \zeta(1+\zeta) x_{2}+\left(1-\zeta^{2}\right) x_{3} \\
=\frac{1}{2} \zeta L+\frac{1}{2} \zeta^{2} L+\frac{1}{2} L+\alpha L-\frac{1}{2} \zeta^{2} L-\alpha \zeta^{2} L \\
=\frac{1}{2} \zeta L+\frac{1}{2} L+\alpha L-\alpha \zeta^{2} L
\end{gathered}
$$

The Jacobian is defined as:

$$
\begin{gathered}
J=\frac{\partial x}{\partial \zeta}=\frac{1}{2} L-2 \alpha \zeta L \\
0=\frac{1}{2} L-2 \alpha \zeta L \\
\alpha=\frac{1}{4 \zeta}
\end{gathered}
$$

The minimum α which makes the Jacobian vanishes, occurs at $\zeta= \pm 1$

$$
\alpha= \pm \frac{1}{4}
$$

The strain is calculated as follows

$$
\epsilon=\frac{\partial \mathbf{N}}{\partial \zeta} \mathbf{u} J^{-1}
$$

$J=0$ at the end points, therefore, the strain tends to infinity which represents a singularity.

2 2nd Question

Same process is used for the 9-node quadrilateral element. A MATLAB code is implemented to show this result.

$$
\begin{aligned}
& x=\sum_{i=1}^{9} N_{i} x_{i} \\
& y=\sum_{i=1}^{9} N_{i} y_{i}
\end{aligned}
$$

The Jacobian in 2d is a matrix calculated as follows:

$$
J=\left[\begin{array}{ll}
\frac{\partial x}{\partial \zeta} & \frac{\partial y}{\partial \zeta} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

For a 2 d element with x from $[0,1]$, y from $[0,1]$, the Jacobian determinant is then calculated at node 2 $(\zeta=1, \eta=-1)$, we find that when node 5 is moved towards node 2 till it's halfway between the original location and node $2(x=0.75)$, the Jacobian vanishes

3 MATLAB code

```
syms z i
N1= 0.25*(z-1)*(i - 1)*Z*i;
N}2=-0.25*\textrm{Z}*(1+\textrm{z})*\textrm{i}*(1-\textrm{i})
N}3=0.25*\textrm{z}*(1+\textrm{z})*(1+\textrm{i})*\textrm{i}
N}4=-0.250*1*(1-z)*(1+\textrm{i})*\textrm{i}
N5= -0.5*(1+z)*(1-z)*(1-i )*i;
N6= 0.5* z*(z+1)*(1+i )*(1-i );
N7= -0.5*(1-\mp@subsup{z}{}{\wedge}2)*(1+i )*i;
N}8=-0.5*\textrm{Z}*(1-\textrm{z})*(1-\textrm{i})*\textrm{i}
N9=(1-z^2)*(1-i ` 2);
x = 0*N1+1*N2+1*N3+0*N4+0.75*N5+1*N6+0.5*N7+0*N8+0.5*N9;
y = 0*N1+0*N2+1*N3+1*N4+0*N5+0.5*N6+1*N7+0.5*N8+0.5*N9;
J=[diff(x,z), diff(y,z); diff(x,i), diff(y,i )];
subs(det(J), [z, i], [1, -1])
```

$\gg \mathrm{p} 2 \mathrm{CSMD}$
ans $=$

0

