Computational Structural Mechanics and Dynamics

Assignment 5

Author: Cristina García Albela
MS in Computational Mechanics

Assignment 5.1

The isoperimetric definition of the straight-node bar element in its local system x is

$$
\left[\begin{array}{l}
1 \\
\bar{x} \\
\bar{u}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3} \\
\bar{u}_{1} & \bar{u}_{2} & \bar{u}_{3}
\end{array}\right]\left[\begin{array}{c}
N_{1}^{e}(\xi) \\
N_{2}^{e}(\xi) \\
N_{3}^{e}(\xi)
\end{array}\right]
$$

Here ξ is the isoparametric coordinate that takes the values $-1,1$ and 0 at the nodes 1,2 and 3 respectively, while N_{1}^{e}, N_{2}^{e} and N_{3}^{e} are the shape functions for a bar element. For simplicity, take $\overline{x_{1}}=0, \overline{x_{2}}=L$ and $\overline{x_{3}}=1 / 2 L+\alpha L$. Here L is the bar length and α a parameter that characterizes how far node 3 is away from the midpoint location $\bar{x}=1 / 2 L$.
Show that the minimum α (minimal in absolute value sense) for which $J=d \bar{x} / d \xi$ vanishes at a point in the element are $\pm 1 / 4$ (the quarter points). Interpret this result as a singularity by showing that the axial strain becomes infinity at an end point.

* cartesian coordinates:

* natural coordinates: (ID QuADratic cement)

- The Jacolaran, can be defined as $J=\frac{d \bar{x}}{d \xi}$, so that, the \bar{x} is going to be determined, and the Jacobian is gong to be colcelated in order to obtain the α values for which $J=0$

1. The \bar{x} is defined as: $\bar{x}=\bar{x}_{1} N_{1}^{e}+\bar{x}_{2} N_{2}^{e}+\overline{x_{3}} N_{3}^{e}$
2. Working with a $1 D$ quadratic element, the shape frenctions $N=a+b\left\{+c\left\{^{2}\right.\right.$ bang $\{$, the wheral coordinate of tue pout. Sushtuting the $i v a l u e s$ at each pout the constants values (a, b, c) are determined in each case, being the shape functions:

$$
\left\{\begin{array}{l}
N_{1} e=\frac{1}{2}\{(\xi-1) \\
N_{2} e^{e}=\frac{1}{2}\{(1+\xi) \\
N_{3} e=1-\{2
\end{array}\right.
$$

3. Iutwoducung in the \bar{x} definition the 3 shape functions and the cortesicu coordinates values ($\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}$):

$$
\begin{aligned}
\bar{x} & =\left[\frac { 1 } { 2 } \left\{(\{-1)] 0+\left[\frac{1}{2}\{(1+\})\right] L+\left[1-\xi^{2}\right]\left(\frac{1}{2} L+\alpha L\right)=\right.\right. \\
& =\frac{1}{2}\left\{\left(1+\{) L+\frac{1}{2} L\left(1-\xi^{2}\right)+\alpha L(1-\}^{2}\right)\right.
\end{aligned}
$$

4. Now, the Jacobian can be calculated

$$
\begin{aligned}
J=\frac{d \bar{x}}{d \xi} & =\left(\frac{1}{2}+\frac{1}{2} 2\left\{L+\left(-\frac{28}{2} L\right)+(-2\{\alpha L)\right.\right. \\
& =\frac{L}{2}-2\{\alpha L
\end{aligned}
$$

5. Applying the condition $J=0$

$$
\begin{aligned}
J=0 \rightarrow & 0=\frac{L}{2}-2\{\alpha L \\
& -2\left\{\alpha=-\frac{1}{2} \rightarrow\left\{\alpha=\frac{1}{4} \rightarrow \alpha=\frac{1}{4 \xi}\right.\right.
\end{aligned}
$$

- As the maximum values, talking in absolut value, that ; can have are 1 and -1 . iuteducing them in the previous equation, the ueimimu values (absolute rale) that α can got are:

$$
\left.\begin{array}{l}
\left\{=1 \rightarrow \alpha=\frac{1}{4}\right. \\
\left\{=-1 \rightarrow \alpha=\frac{-1}{4}\right.
\end{array}\right\}
$$

- So it can be conclud tret the minium α for which $J=\frac{d \bar{x}}{d \xi}$ vanishes are $\pm 1 / 4$
- This result can be interpreted as a singularity, by calculating the strain at a he end points $(q=-1$ and $q=1)$.

1. Working with natural coordinates, the stain matux cal bo whited as:
$[\varepsilon]=[B]\left[J^{-1}\right][U]$, where J^{-1} is the invese of the Jacobean.

$$
J=\frac{d \bar{x}}{d s} \longrightarrow J^{-1}=\frac{d s}{d \bar{x}}
$$

- It has been shown that, at the end paints of the element, the Jacobian vanishes; so that, tHee axial strain Exp:

$$
\text { If } J=\frac{d \bar{x}}{d \xi}=0 \rightarrow J^{-1}=\frac{1}{J}=\frac{1}{0}=\infty
$$

- As for calculate the strain, the B matux is mulhplied by the inverse of the Jacobian, (calculated as ∞), it can be concluded that the strain will be intruty 100,

As $J^{-1}=\infty, \quad \varepsilon=B J^{-1} U \longrightarrow \infty$

Assignment 5.2

Extend the results obtained from the previous Exercise for a 9-node plane stress element. The element is initially a perfect square, nodes $5,6,7$ and 8 are at the midpoint of the sides 1-2, 2-3, 3-4 and 4-1 respectively and 9 at the center of the square.
Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is important in the construction of "singular elements" for fracture mechanics.

- Now, a 9-node quadrilateral element is gong to be studded, in order to chock at which pout the Jacebian datermina nt vanishes if point 5 is moved towards node 2 .
- First of all, the element au its dimensions are defined

$$
\left\{\begin{array}{l}
x_{1}=0 \\
y_{1}=0 \\
L=1
\end{array}\right.
$$

- The length of the square is equal to one and the origin of the courtesian coordinates is fixed at paint 1.
- For this kun of element, the Jacobian is dehned as

$$
|J|=\left|\begin{array}{ll}
\frac{\partial x}{\partial q} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \tau} & \frac{\partial y}{\partial \eta}
\end{array}\right|
$$

So that, natural coordinates are metroduced, fixus the origin at pout 9 , where $\{=0, \eta=0$, and knowing that any $\{\in[-1,1]$ and any $\eta \in[-1,1]$

- Finally, u order to calculate the Jacobian daterminaut x, y and the shape functions should bo defined:
- $x=\sum_{i=1}^{q} N_{i}(\xi, \eta) X_{i}$
- $y=\sum_{i=1}^{q} N_{i}(\xi, \eta) y_{i}$
- The shape functions Ni, $i=1 \ldots 9$ definied for the 9 -node quadrilateral element can be obtained using the studied methods.
- Using the help of Matlab to solve the problem (code attached below), all the weeded elements (x, y, shape functions and Jacobson) are defined in order to chock at which point of line 1-2, occeppaid by rode 5 , the $|J|$ vanishes.
- As the determinant $|J|$ is calculated at point 2 , the natural coordinates $\left\{, \eta\right.$ take the values: $\left\{\begin{array}{l}\{=1 . \\ \eta=-1\end{array}\right.$
- For rode 5, the withal coordinates $(x, y)=(0,5,0)$. The x-cordentate changes getting closer to 1 .
- Rurung the Matlab code, the determinant $|J|$ takes value zero when paint 5 coordinates are $(x, y)=(0175,0)$, the quarter point of side 1-2.

$$
\text { At }\left(x_{5}, y_{5}\right)=(0175,0) \rightarrow|J|=0
$$

- The obtained results, $(1 J \mid=0)$ tell us that for 20 higher order elemeouts the proper location of the corner nodes $(1,2,3,4)$ is not enough. The no-corner rodeos, as node 5, should be placed enough close to their natural coordinates in order to avoid local distorsions. Although, this cases have applications in the constructions of spacial crack elements for unear fracture mechanics.

MATLAB CODE

```
syms e
syms n
%Shape functions
N1 = 0.25*(e-1)*(n-1)*e*n;
N2 = 0.25*(1+e)*(n-1)*e*n;
N3 = 0.25*(1+e)*(1+n)*e*n;
N4 = 0.25*(e-1)*(1+n)*e*n;
N5 = 0.5*(1-e^2)*(n^2-n);
N6 = 0.5*(e^2+e)*(1-n^2);
N7 = 0.5*(1-e^2)*(n^2+n);
N8 = 0.5*(e^2-e)*(1-n^2);
N9 = (1-e^2)*(1-n^2);
% x & y coordinates
% x5 = 0.75
x = 0*N1+1*N2+1*N3+0*N4+0.75*N5+1*N6+0.5*N7+0*N8+0.5*N9;
y = 0*N1+0*N2+1*N3+1*N4+0*N5+0.5*N6+1*N7+0.5*N8+0.5*N9;
%Jacobian
J = [diff(x,e) diff(y,e)
    diff(x,n) diff(y,n)];
\%Determinant
subs (det(J), [e, n], [1 , -1])
```

