
Universitat Politècnica de Catalunya
Numerical Methods in Engineering

Computational Solid Mechanics and Dynamics

Convergence requirements

Assignment 5

Eduard Gómez
March 13, 2020

Contents

1 Assignment 4.1 1
1.1 Statement . 1
1.2 Solution . 1

2 Assignment 4.2 3
2.1 Statement . 3
2.2 Solution . 3

A Appendix 4
A.1 Matlab program for assignment 5.2 . 4
A.2 Program outputs . 5
A.3 Shape functions subroutine . 6

Eduard Gómez March 13, 2020

1 Assignment 4.1

1.1 Statement

The isoparametric definition of the straight–node bar element in its local system x is:1
x̄
ū

 =

 1 1 1
x̄1 x̄2 x̄3
ū1 ū2 ū3

Ne
1 (ξ)

Ne
2 (ξ)

Ne
2 (ξ)

 (1)

Here ξ is the isoparametric coordinate that takes the values –1, 1 and 0 at nodes 1, 2 and 3 respectively, while
Ne

1 , Ne
2 and Ne

3 are the shape functions for a bar element.

For simplicity, take x̄1 = 0, x̄2 = L and x̄3 = 1
2L ± αL. Here L is the bar length and α a parameter

that characterizes how far node 3 is away from the midpoint location x̄ = 1
2L.

Show that the minimum α (minimal in absolute value sense) for which J = dx̄/ dξ vanishes at a point
in the element are ±¼ (the quarter points). Interpret this result as a singularity by showing that the axial
strain becomes infinite at an end point

1.2 Solution

Let’s start off by defining the shape functions in ispoarametric space:

N1(ξ) =
1

2
ξ(1− ξ)

N2(ξ) =
1

2
ξ(1 + ξ)

N3(ξ) = 1− ξ2


(2)

Let’s now opearate the second row in equation 1:

x̄ = x̄1N1(ξ) + x̄2N2(ξ) + x̄3N3(ξ) (3)

=
1

2
Lξ(1 + ξ) +

(
1

2
L+ αL

)
(1− ξ2) (4)

=
1

2
L
(
1 + 2α− 2αξ2

)
(5)

As expected, it looks like a parabola for all cases where the points are unequally spaced (i.e. α 6= 1
2). Let’s now

compute the jacobian:

J(ξ) =
dx̄

dξ
=

1

2
L (1− 4αξ) (6)

Once again, the mapping is affine for equally spaced points. Let’s now find what α causes the Jacobian
to vanish at some point of ξ. The jacobian is linear so for the critical value of α either end of the domain

Computational Solid Mechanics and Dynamics 1 Numerical Methods in Engineering

Eduard Gómez March 13, 2020

ξ ∈ [−1, 1] will be zero. Hence:

J(±1) = 0 (7)
1

2
L (1± 4α0) = 0 (8)

1± 4α0 = 0 (9)

α0 = ∓1

4
(10)

Therefore our critical value is |α| = 1
4 . Let’s see how this affects the strain. We have that:

ε(x) =
du

dx
(11)

=

3∑
i=1

dNi

dx
u(xi) (12)

=

3∑
i=1

dξ

dx

dNi

dξ
u(xi) (13)

= J−1(ξ(x))

3∑
i=1

dNi

dξ
u(xi) (14)

When the Jacobian vanishes, its reciprocal becomes unbounded, therefore so does the strain.

Computational Solid Mechanics and Dynamics 2 Numerical Methods in Engineering

Eduard Gómez March 13, 2020

2 Assignment 4.2

2.1 Statement

Extend the results obtained from the previous Exercise for a 9-node plane stress element. The element is
initially a perfect square, nodes 5,6,7,8 are at the midpoint of the sides 1–2, 2–3, 3–4 and 4–1, respectively,
and 9 at the center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is impor-
tant in the construction of “singular elements” for fracture mechanics.

2.2 Solution

This section can quickly become tedious due to long algebraic manipulation, hence I wrote a Matlab script
to solve it for me. Partial results are shown nevertheless. We’ll define the mapping as M : ξξξ 7→ xxx. We start
with a unit square in natural space [0, 0]× [1, 1] and obtain it’s mapping to isoparametric space using the same
method as before:

M(ξ, η) =

9∑
i=1

[
xi
yi

]
N(ξ, η) (15)

where xi and yi are the positions of the nodes in natural coordinates. Applying the previous equation returns:

M(ξ, η) =
1

2

(ξ + 1)
(
η2α− ηα+ ξηα− ξη2α+ 1

)
η + 1

 (16)

Once again α is the source of non-linearity. Thaking the gradient in iso-parametric space yields:

J(ξ, η) = ∇isoM(ξ, η) =
1

2

2ξηα− 2ξη2α+ 1 −α (2η − 1)
(
ξ2 − 1

)
0 1

 (17)

Today we’re interested in the determinant of the jacobian:

|J(ξ, η)| = 2ξηα− 2ξη2α+ 1 (18)

We particularly want the jacobian to vanish at node 2, hence ξξξ = [1,−1]T :

|J(1,−1)| = 1

4
− α (19)

We see that it vanishes at α = 1
4 .

Computational Solid Mechanics and Dynamics 3 Numerical Methods in Engineering

Eduard Gómez March 13, 2020

A Appendix

A.1 Matlab program for assignment 5.2

The program looks like the following. The functions used to turn the expressions into LATEX were developed by
me as well, so all the work is original. Function shape_fun_quad_9 is also mine and shown in appendix A.3

1 %%%%%%%%%%%% Using functions to help write the report: %%%%%%%%%%%%%

2 addpath('MatlabLaTeX');

3 addpath('MatlabLaTeX/format_sym_expression')

4

5 %%%%%%%%%%%%%%%%%%%%%%%% Variable declaration %%%%%%%%%%%%%%%%%%%%%%

6 % Using this strange name convention so format_sym_expression() can

7 % turn them into latex variables \xi, \eta and \alpha

8 xi = sym('__BS__xi','real');

9 eta = sym('__BS__eta','real');

10 alpha = sym('__BS__alpha','positive');

11 xi_critical = 1;

12 eta_critical = -1;

13

14 %%%%%%%%%%%%%%%%%%%%%%% Square to be studied: %%%%%%%%%%%%%%%%%%%%%%

15 % 1 2 3 4 5 6 7 8 9

16 X = [0 1 1 0 .5+alpha 1 .5 0 .5;

17 0 0 1 1 0 .5 1 .5 .5];

18

19 %%%%%%%%%%% Obtaining natural to isoparametric mapping: %%%%%%%%%%%

20 map = 0;

21 for shape_fun = 1:9

22 map = map + X(:,shape_fun)*shape_fun_quad_9(shape_fun, xi, eta);

23 end

24 map = simplify(map);

25 matrixLaTeX('map.tex',map,'%s');

26 disp(' ')

27 disp('# Map stored in ');

28 disp('map.tex');

29

30 %%%%%%%%%%%%%%%%%%%% Obtaining jacobian matrix: %%%%%%%%%%%%%%%%%%%%

31 Jmat = 0*sym('J');

32 isop = {xi, eta};

33

34 for i = 1:2

35 for j = 1:2

36 Jmat(i,j) = simplify(diff(map(i), isop{j}));

37 end

38 end

39 matrixLaTeX('jacobian.tex',Jmat,'%s');

40 disp(' ')

41 disp('# Jacobian matrix stored in');

42 disp('jacobian.tex');

Computational Solid Mechanics and Dynamics 4 Numerical Methods in Engineering

Eduard Gómez March 13, 2020

43

44 %%%%%%%%%%%%%%%%%%%%%%% Obtaining jacobian: %%%%%%%%%%%%%%%%%%%%%%%

45 disp(' ')

46 disp('# |J(xi,eta)|:')

47 J = simplify(det(Jmat));

48 disp(format_sym_expression(J));

49

50 %%%%%%%%%%%%%%%%%%%% Evaluating at point 2 %%%%%%%%%%%%%%%%%%%%%%

51 Jcritical = subs(subs(J,xi,xi_critical),eta,eta_critical);

52 disp(' ')

53 disp('# |J(xi,eta)| @ critical node:')

54 disp(format_sym_expression(Jcritical));

55

56 %%%%%%%%%%%%%%%% Solving for Jcritical = 0 %%%%%%%%%%%%%%%%%%%%%%%

57 alpha_critical = solve(Jcritical == 0, alpha);

58 disp(' ')

59 disp('# Critical alpha:')

60 disp(format_sym_expression(alpha_critical));

A.2 Program outputs

The output of the program looks like such:

1 # Map stored in

2 map.tex

3

4 # Jacobian matrix stored in

5 jacobian.tex

6

7 # |J(xi,eta)|:

8 \frac{\xi\eta\alpha}{2}-\frac{\left(\xi\eta^2\alpha\right)}{2}+\frac{1}{4}

9

10 # |J(xi,eta)| @ critical node:

11 \frac{1}{4}-\alpha

12

13 # Critical alpha:

14 \frac{1}{4}

Where the two tex files are the matrices in equations 16 and 17.

Computational Solid Mechanics and Dynamics 5 Numerical Methods in Engineering

Eduard Gómez March 13, 2020

A.3 Shape functions subroutine

1 function z = shape_fun_quad_9(i,X,Y)

2 % Program to calculate shape functions on a plane quadrilateral with

3 % nine nodes in isoparametric space.

4 % INPUTS

5 % - i is the shape function N_i to evaluate. Only one value.

6 % - X is a an array, vector or variable to evauate on

7 % - Y is a an array, vector or variable to evauate on

8 % OUTPUTS

9 % - z a an array, vector or variable of shape function z = N_i(i,X,Y);

10 if(size(i,1) ~= 1 || size(i,2) ~= 1)

11 error('i must be a single number, not a vector or array');

12 elseif(i < 1 || i > 9)

13 error('i must be within 1 and 9');

14 end

15 if(size(X,1) ~= size(Y,1) || size(X,2) ~= size(Y,2))

16 error ('X and Y must be the same size');

17 end

18

19 % 1 2 3 4 5 6 7 8 9

20 X_nodes = [-1 1 1 -1 0 1 0 -1 0];

21 Y_nodes = [-1 -1 1 1 -1 0 1 0 0];

22 for a = size(X,1):-1:1

23 for b = size(X,2):-1:1

24 x = X(a,b);

25 y = Y(a,b);

26

27 x_node = X_nodes(i);

28 y_node = Y_nodes(i);

29

30 vals = [-1,0,1];

31

32 X0 = vals(vals~=x_node);

33 Y0 = vals(vals~=y_node);

34

35 if i < 5

36 z0 = 0.25;

37 elseif i<9

38 z0 = -0.5;

39 else

40 z0 = 1;

41 end

42 z(a,b) = z0 * (X0(1) - x)*(X0(2) - x)*(Y0(1) - y)*(Y0(2) - y);

43 end

44 end

45 end

Computational Solid Mechanics and Dynamics 6 Numerical Methods in Engineering

	Assignment 4.1
	Statement
	Solution

	Assignment 4.2
	Statement
	Solution

	Appendix
	Matlab program for assignment 5.2
	Program outputs
	Shape functions subroutine

