Universitat Politècnica de Catalunya
Numerical Methods in Engineering Computational Solid Mechanics and Dynamics

Convergence requirements

Assignment 5

Eduard Gómez
March 13, 2020

Contents

1 Assignment 4.1 1
1.1 Statement 1
1.2 Solution 1
2 Assignment 4.2 3
2.1 Statement 3
2.2 Solution 3
A Appendix 4
A. 1 Matlab program for assignment 5.2 4
A. 2 Program outputs 5
A. 3 Shape functions subroutine 6

1 Assignment 4.1

1.1 Statement

The isoparametric definition of the straight-node bar element in its local system \underline{x} is:

$$
\left[\begin{array}{c}
1 \tag{1}\\
\bar{x} \\
\bar{u}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3} \\
\bar{u}_{1} & \bar{u}_{2} & \bar{u}_{3}
\end{array}\right]\left[\begin{array}{c}
N_{1}^{e}(\xi) \\
N_{2}^{e}(\xi) \\
N_{2}^{e}(\xi)
\end{array}\right]
$$

Here ξ is the isoparametric coordinate that takes the values $-1,1$ and 0 at nodes 1,2 and 3 respectively, while N_{1}^{e}, N_{2}^{e} and N_{3}^{e} are the shape functions for a bar element.

For simplicity, take $\bar{x}_{1}=0, \bar{x}_{2}=L$ and $\bar{x}_{3}=\frac{1}{2} L \pm \alpha L$. Here L is the bar length and α a parameter that characterizes how far node 3 is away from the midpoint location $\bar{x}=\frac{1}{2} L$.

Show that the minimum α (minimal in absolute value sense) for which $J=d \bar{x} / d \xi$ vanishes at a point in the element are $\pm 1 / 4$ (the quarter points). Interpret this result as a singularity by showing that the axial strain becomes infinite at an end point

1.2 Solution

Let's start off by defining the shape functions in ispoarametric space:

$$
\left.\begin{array}{l}
N_{1}(\xi)=\frac{1}{2} \xi(1-\xi) \tag{2}\\
N_{2}(\xi)=\frac{1}{2} \xi(1+\xi) \\
N_{3}(\xi)=1-\xi^{2}
\end{array}\right\}
$$

Let's now opearate the second row in equation 1:

$$
\begin{align*}
\bar{x} & =\bar{x}_{1} N_{1}(\xi)+\bar{x}_{2} N_{2}(\xi)+\bar{x}_{3} N_{3}(\xi) \tag{3}\\
& =\frac{1}{2} L \xi(1+\xi)+\left(\frac{1}{2} L+\alpha L\right)\left(1-\xi^{2}\right) \tag{4}\\
& =\frac{1}{2} L\left(1+2 \alpha-2 \alpha \xi^{2}\right) \tag{5}
\end{align*}
$$

As expected, it looks like a parabola for all cases where the points are unequally spaced (i.e. $\alpha \neq \frac{1}{2}$). Let's now compute the jacobian:

$$
\begin{equation*}
J(\xi)=\frac{d \bar{x}}{d \xi}=\frac{1}{2} L(1-4 \alpha \xi) \tag{6}
\end{equation*}
$$

Once again, the mapping is affine for equally spaced points. Let's now find what α causes the Jacobian to vanish at some point of ξ. The jacobian is linear so for the critical value of α either end of the domain
$\xi \in[-1,1]$ will be zero. Hence:

$$
\begin{align*}
J(\pm 1) & =0 \tag{7}\\
\frac{1}{2} L\left(1 \pm 4 \alpha_{0}\right) & =0 \tag{8}\\
1 \pm 4 \alpha_{0} & =0 \tag{9}\\
\alpha_{0} & =\mp \frac{1}{4} \tag{10}
\end{align*}
$$

Therefore our critical value is $|\alpha|=\frac{1}{4}$. Let's see how this affects the strain. We have that:

$$
\begin{align*}
\varepsilon(x) & =\frac{d u}{d x} \tag{11}\\
& =\sum_{i=1}^{3} \frac{d N_{i}}{d x} u\left(x_{i}\right) \tag{12}\\
& =\sum_{i=1}^{3} \frac{d \xi}{d x} \frac{d N_{i}}{d \xi} u\left(x_{i}\right) \tag{13}\\
& =J^{-1}(\xi(x)) \sum_{i=1}^{3} \frac{d N_{i}}{d \xi} u\left(x_{i}\right) \tag{14}
\end{align*}
$$

When the Jacobian vanishes, its reciprocal becomes unbounded, therefore so does the strain.

2 Assignment 4.2

2.1 Statement

Extend the results obtained from the previous Exercise for a 9-node plane stress element. The element is initially a perfect square, nodes $5,6,7,8$ are at the midpoint of the sides $1-2,2-3,3-4$ and $4-1$, respectively, and 9 at the center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is important in the construction of "singular elements" for fracture mechanics.

2.2 Solution

This section can quickly become tedious due to long algebraic manipulation, hence I wrote a Matlab script to solve it for me. Partial results are shown nevertheless. We'll define the mapping as $M: \boldsymbol{\xi} \mapsto \boldsymbol{x}$. We start with a unit square in natural space $[0,0] \times[1,1]$ and obtain it's mapping to isoparametric space using the same method as before:

$$
M(\xi, \eta)=\sum_{i=1}^{9}\left[\begin{array}{l}
x_{i} \tag{15}\\
y_{i}
\end{array}\right] N(\xi, \eta)
$$

where x_{i} and y_{i} are the positions of the nodes in natural coordinates. Applying the previous equation returns:

$$
M(\xi, \eta)=\frac{1}{2}\left[\begin{array}{c}
(\xi+1)\left(\eta^{2} \alpha-\eta \alpha+\xi \eta \alpha-\xi \eta^{2} \alpha+1\right) \tag{16}\\
\eta+1
\end{array}\right]
$$

Once again α is the source of non-linearity. Thaking the gradient in iso-parametric space yields:

$$
J(\xi, \eta)=\nabla^{\text {iso }} M(\xi, \eta)=\frac{1}{2}\left[\begin{array}{cc}
2 \xi \eta \alpha-2 \xi \eta^{2} \alpha+1 & -\alpha(2 \eta-1)\left(\xi^{2}-1\right) \tag{17}\\
0 & 1
\end{array}\right]
$$

Today we're interested in the determinant of the jacobian:

$$
\begin{equation*}
|J(\xi, \eta)|=2 \xi \eta \alpha-2 \xi \eta^{2} \alpha+1 \tag{18}
\end{equation*}
$$

We particularly want the jacobian to vanish at node 2 , hence $\boldsymbol{\xi}=[1,-1]^{T}$:

$$
\begin{equation*}
|J(1,-1)|=\frac{1}{4}-\alpha \tag{19}
\end{equation*}
$$

We see that it vanishes at $\alpha=\frac{1}{4}$.

A Appendix

A. 1 Matlab program for assignment 5.2

The program looks like the following. The functions used to turn the expressions into $\mathrm{BT}_{\mathrm{E}} \mathrm{X}$ were developed by me as well, so all the work is original. Function shape_fun_quad_9 is also mine and shown in appendix A. 3

```
%%%%%%%%%%%% Using functions to help write the report: %%%%%%%%%%%%%%
addpath('MatlabLaTeX');
addpath('MatlabLaTeX/format_sym_expression')
%%%%%%%%%%%%%%%%%%%%%%%%% Variable declaration %%%%%%%%%%%%%%%%%%%%%%%
% Using this strange name convention so format_sym_expression() can
% turn them into latex variables \xi, leta and \alpha
xi = sym('__BS__xi','real');
eta = sym('__BS__eta','real');
alpha = sym('__BS__alpha','positive');
xi_critical = 1;
eta_critical = -1;
%%%%%%%%%%%%%%%%%%%%%%%% Square to be studied: %%%%%%%%%%%%%%%%%%%%%%
% 1 1 2 3 4 4 5 5 6 7 % 8
X = [lllllllll}
    0
%%%%%%%%%%% Obtaining natural to isoparametric mapping: %%%%%%%%%%%
map = 0;
for shape_fun = 1:9
        map = map + X(:,shape_fun)*shape_fun_quad_9(shape_fun, xi, eta);
end
map = simplify(map);
matrixLaTeX('map.tex',map,'%s');
disp(' ')
disp('# Map stored in ');
disp('map.tex');
%%%%%%%%%%%%%%%%%%%%% Obtaining jacobian matrix: %%%%%%%%%%%%%%%%%%%%%
Jmat = 0*sym('J');
isop = {xi, eta};
for i = 1:2
    for j = 1:2
            Jmat(i,j) = simplify(diff(map(i), isop{j}));
        end
end
matrixLaTeX('jacobian.tex',Jmat,'%s');
disp(' ')
disp('# Jacobian matrix stored in');
disp('jacobian.tex');
```

```
%%%%%%%%%%%%%%%%%%%%%%%% Obtaining jacobian: %%%%%%%%%%%%%%%%%%%%%%%%
disp(' ')
disp('# |J(xi,eta)|:')
J = simplify(det(Jmat));
disp(format_sym_expression(J));
%%%%%%%%%%%%%%%%%%%% Evaluating at point 2 %%%%%%%%%%%%%%%%%%%%%%%
Jcritical = subs(subs(J,xi,xi_critical),eta,eta_critical);
disp(' ')
disp('# |J(xi,eta)| @ critical node:')
disp(format_sym_expression(Jcritical));
%%%%%%%%%%%%%%%%% Solving for Jcritical = 0 %%%%%%%%%%%%%%%%%%%%%%%%
alpha_critical = solve(Jcritical == 0, alpha);
disp(' ')
disp('# Critical alpha:')
disp(format_sym_expression(alpha_critical));
```


A. 2 Program outputs

The output of the program looks like such:

```
# Map stored in
map.tex
# Jacobian matrix stored in
jacobian.tex
# |J(xi,eta)|:
\frac{\xi\eta\alpha}{2}-\frac{\left(\xi\eta^2\alpha\right)}{2}+\frac{1}{4}
# |J(xi,eta)| @ critical node:
\frac{1}{4}-\alpha
# Critical alpha:
\frac{1}{4}
```

Where the two tex files are the matrices in equations 16 and 17.

A. 3 Shape functions subroutine

```
function z = shape_fun_quad_9(i,X,Y)
    % Program to calculate shape functions on a plane quadrilateral with
    % nine nodes in isoparametric space.
    % INPUTS
    % - i is the shape function N_i to evaluate. Only one value.
    % - X is a an array, vector or variable to evauate on
    % - Y is a an array, vector or variable to evauate on
    % OUTPUTS
    % - z a an array, vector or variable of shape function z = N_i(i,X,Y);
    if(size(i,1) ~= 1 || size(i,2) ~= 1)
        error('i must be a single number, not a vector or array');
    elseif(i < 1 || i > 9)
        error('i must be within 1 and 9');
    end
    if(size(X,1) ~= size(Y,1) || size(X,2) ~= size(Y,2))
        error ('X and Y must be the same size');
    end
    % 1
    X_nodes = [llllllllllll}-
    Y_nodes = [-1 -1 1
    for a = size(X,1):-1:1
        for b = size(X,2):-1:1
            x = X(a,b);
            y = Y(a,b);
            x_node = X_nodes(i);
            y_node = Y_nodes(i);
            vals = [-1,0,1];
            XO = vals(vals }\mp@subsup{}{~}{~}=x_node)
            YO = vals(vals }\mp@subsup{}{}{~}=y_node)
            if i < 5
                z0 = 0.25;
            elseif i<9
                z0 = -0.5;
            else
                z0 = 1;
            end
            z(a,b) = zO * (XO(1) - x)*(XO(2) - x)*(YO(1) - y)*(YO(2) - y);
        end
    end
end
```

