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Assignment 5

5.1 The isoparametric definition of the straightnode bar element in its local
system z is,
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Here ¢ is the isoparametric coordinate that takes the values —1, 1 and 0 at nodes
1, 2 and 3 respectively, while N7, N5 and N5 are the shape functions for a bar
element.

For simplicity, take 7, =0, 2y, = [, T3 = %l + al. Here [ is the bar length and a a
parameter that characterizes how far node 3 is away from the midpoint location

-1
x—2l.

Show that the minimum a (minimal in absolute value sense) for which J = dz/d¢
vanishes at a point in the element are :I:%t (the quarter points). Interpret this
result as a singularity by showing that the axial strain becomes infinite at an
end point.

For the given element, the shape functions are:
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And using the first expresion:
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Then, the Jacobian :
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which vanishes for & = +1/4 and £ # 0, i.e. at the end nodes.

Again, using the first expression, the displacement vector is:

u = U1N1 + UQNQ + U3N3 (3)

Considering ¢ = d—u, it is possible to obtain:
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Since d_§ = J'land J = 0 for a = £1/4 at the end points, the strain value becomes infinite.
x



5.2 Extend the results obtained from the previous Exercise for a 9-node plane
stress element. The element is initially a perfect square, nodes 5,6,7,8 are
at the midpoint of the sides 12, 23, 34 and 41, respectively, and 9 at the
center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2
vanishes. This result is important in the construction of singular elements
for fracture mechanics.

For the given element, the shapes functions can be found using the line-product method:

o Ni= 606~ 10— 1)

Ny = Z6n(€ + 1n 1)

Ny = Z60(€ + 1) +1)

Ny = Z60(€ — Dn+1)

o Ny= gl - €)(n—1)

Ny = Z€(E+1)(1 — )

o No= Sl —€)n+1)

Ny = 5606~ 1)1 - 7?)

Ny = (1-¢)(1 -7

The geometric coordinates:
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The Jacobian matrix J for the given problem is defined by the following expression:
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The partial derivatives of the shape functlons have the following form:
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For node 2 (£ =1, n = —1), the Jacobian reduces to:
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The determinant of the Jacobian vanishes for the following value of a:
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