UNIVERSITAT POLITECNICA :* *** Erasmus
DE CATALUNYA Mundus

BARCELONATECH

UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA

MSc. COMPUTATIONAL MECHANICS ERASMUS MUNDUS

ASSIGNMENT 5: ISOPARAMETRIC
REPRESENTATION

Computational Structural Mechanics
& Dynamics

Author:
Nikhil Dave

Date: March 8, 2018



CSMD - Assignment 5: Isoparametric representation Nikhil Dave

On “Isoparametric representation”:

Problem 5.1

Consider a three-node bar element referred to the natural coordinate £&. The two
end nodes and the mid node are identified as 1, 2 and 3 respectively. The natural
coordinates of nodes 1, 2 and 3 are £ = —1, £ = 1 and £ = 0, respectively. The
variation of the shape functions N; (), No(§) and N3(&) is sketched in the figure
below. These functions must be quadratic polynomials in &:

N{(€) = ap + ar1€ + az€®  N(€) = by + bi€ + b€ N5(€) = co + 1€ + c2€?

i 0 N3 (§)
Ni(E) Ny () ¥
1 1 1
! 3- o2 1o 2 32 16 3 02
&=1 =0 E=1 &1 =0 =l &=l =0 &=

Figure 1: Isoparametric shape functions for 3-node bar element (sketch). Node 3 has
been drawn at the 1-2 midpoint but it may be moved away from it.

a) Determine the coefficients ay, ..., c2 using the node value conditions depicted in
the figure. For example N{ = 1 for £ = —1 and O for the rest of natural coordinates.
The rest of the nodes follow the same scheme.

Solution: Let us consider the first shape function N¢. From figure 1, we can write
the node values at each natural coordinate. For example,

Foré = —1,Nf(§) =1 = N{(=1)=ap+a;(=1) +ay(-1)>=1

ao—a1+a2:1 (1)

ag — 0 (2)

For{ = 1, NJ(€) =0 = N{(1) =ag+ay(1) +az(1)* =0
a0+a1—|—a2:0 (3)
From equations (1), (2) and (3), we get,

1 1
ap =0, a1:—§, a2:§




CSMD - Assignment 5: Isoparametric representation Nikhil Dave

Thus we have,
1
Ni(€) = —56(1—9)
Similarly, for the second shape function we can write,
For{ = —1,N§(€) =0 = N§(—1) =by+ by (—=1)+by(—1)*=0

bO_bl+b2:0

Foré = 1,N5(6) =1 = N§(1) =by+bi(1) +by(1)?> =1
bo+ by + by =1
From equations (4), (5) and (6), we get,

Thus we have,
1

N5(§) = 36(1+9)

Lastly, for the third shape function, we repeat the same process,

Foré = —1,N§(€) =0 = N§(—1)=co+ci(—1)+c(=1)*=0

00—01+02:0

Foré =0,N5(&) =1 = N5(0) =co+c1(0) +cp(0)* =1

C():l

Foré =1,N5(€) =0 = N{(1)=co+ci(1)+ (1) =0
Co+c1+cy= 0
From equations (7), (8) and (9), we get,

‘C(]:l7 01:0, 62:—1‘

Thus we have,
N5(€)=1-¢

Therefore, we get the shape functions as,

Ni(€) = —360-8), N5(©) =561+8), N5(©)=1-¢

4)

(5)

(6)

(7)

(8)

9)
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b) Verify that their sum is identically one.
Solution: The shape functions derived in the last section are given as,
1 1
Ni(©) = =560 -8, N5(©) = 361+, Nj©)=1-¢

It is clearly seen that the sum of the shape functions is unity i.e.

1. 1, 1. 1, )

e S 21— =1
S5 e+ 5P 16

Therefore it is verified,

VE() + N5(€) + N5(6) = 1]

c) Calculate their derivatives respect to the natural coordinates.

Solution: Now, we calculate the derivatives of the shape functions with respect to
the natural coordinates,

11,
aNg(e) _ 3¢+ 35 N{(§) _ 1
€ " @ 7 |Ta —atd
(€) d(1§+ 152) (
ang(e) _ 1G85 aN5(§) _ 1
T TR
dN5(§)  d(1 —¢&?) dN5(§)
€~ & — |a X

It is interesting to note that the sum of the derivatives of the shape functions is also
unity, i.e.
ANE(E) | dN5(©) | dN5(©)

de dé g
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Problem 5.2

A five node quadrilateral element has the nodal configuration shown in the figure
with two perspective views of Ny and N¢. Find five shape functions Nf,i = 1,...,5
that satisfy compatibility and also verify that their sum is unity.

Figure 2

Solution: Firstly, we use the line-product method for finding the shape function for
node 5. From figure 2 we can examine that,

Ng,e =c1 L1 gLy 3 L3 4 Ly (10)

It is by construction that this expression vanishes over the nodes 1, 2, 3, 4 (or over
the sides 1-2, 2-3, 3-4 and 4-1) and can be normalised to unity at node 5 by adjusting
the value of ¢;. The equation for the four sides, 1-2, 2-3, 3-4 and 4-1, are known to
ben=—-1,£ = 1,7 =1 and £ = —1 respectively. Using these in equation (10), we
get,

N (Em) =c(n+1)(n—1) (+1) (£—1)

We evaluate this expression at node 5, to find the value of ¢;, which has natural
coordinates of £ = n = 0.

N5(0,0) = (1) (=1) (1) (=1) =1

Thus, ¢; = 1 and shape function for node 5 is,

Ng(&m) =m+1) (=1 (E+1) (E-1)

Now, we know the corner shape functions N¢(¢,n) with i = 1,2, 3,4 for the 4-node
quadrilateral are given as,

Np=10-n) (-8

Ny = 10— (+8)

N =104m) (1+8)

Ni= 10+ (-




CSMD - Assignment 5: Isoparametric representation Nikhil Dave

Despite the fact that the shape functions of the corner nodes resembles the shape
functions of a 4-node quadrilateral, they are not the same i.e. N; # N;. For example,
the corner shape function Nf shown in figure 2 must vanish at node 5 (with £ = 7
= 0). However it takes a value of 1/4. This is illustrated in table 1.

Node 1 2 3 4

Ny 1 0 0 O

Ny 01 0 O

Nygy 0 0 1 O

Ny 0 0 0 1

i e i Rl i o M | B

NS 0 0 0 O

Table 1: Corner shape functions not vanishing at node 5

In order to combat this situation, we define a factor « in the expression for the corner
shape functions so that all corner Nf (fori = 1, 2, 3, 4) vanish at node 5. Thus,

Nf = Nf +a Nf for i=1,2,34 (11)

The use of the factor « in the corner shape functions is shown in table 2, where it is
important to note that for the corner shape functions to vanish at node 5,

Node 1 2 3 4 5
Ny 1 0 0 O }l+a
N: 01 0 0 i#—a
N; 0 0 1 O }l+a
N; 0 0 0 1 }l+a
NS 0 0 0 O 1

1
Table 2: Corner shape functions using the factor o which vanishes them for o = ~1
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1
Therefore, using a = ~1 in the equation (11), we get the shape functions of a
5-node quadrilateral element that satisfy compatibility,

Np= (1= (1-8 — 3+ 1) (1= 1) E+1) (€~ 1) (12)
Ny = (1= (148~ (4 1) (=1 (E+1) (€~ 1) a3)
Ny =2 +m) (148 — 3+ 1) (- 1) €+1) (€~ 1) 14
Ni= 70+ (1-8 — 7 +1) (1= 1) E+1) (€~ 1) as)

Ng=(m+1) -1 E+1 (-1 (16)

Also, it is verified that the sum of the shape functions is unity i.e.

5

> Nf=1

=1

Problem 5.3

On “Convergence requirements”:

Which minimum integration rules of Gauss-product type gives a rank sufficient stiff-
ness matrix for these elements:

1. the 8-node hexahedron

2. the 20-node hexahedron
3. the 27-node hexahedron
4. the 64-node hexahedron

Solution: Let us assume that the Gaussian formula is used with stress-strain matrix
E constant over the element. Then the numerical integration of the stiffness matrix
is given by,

P1 P2 p3
K=Y "> wi B E Bij Jix (17)
=1 j=1 k=1

where the number of Gauss points along the &, 7 and v directions is denoted by p, p»
and p; respectively.

The rule is identified as p; x py X ps and has p;psps points. For conventional hexa-
hedral elements, the number of integration points is taken the same in all directions
i.e. p = p1 = po = p3, and the total number of Gauss points is ng = p?, This is known
as the isotropic product rule and each point adds 6 to the stiffness matrix rank.

7
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1. For a 8-node hexahedron (n = 8),

All degree of freedom (dofs) = 8*3 = 24
Subtracting the rigid body modes, for a rank stiffness matrix, we get 24 - 6 = 18
Therefore the condition for a 8-node hexahedron is given by,

6ng =6p° > 18 = ng >3 = Ranksufficient for 2 x 2 x 2

Therefore the 8-point product rule gives a rank sufficient stiffness matrix K° for a
8-node hexahedron.

2. For a 20-node hexahedron (n = 20),

All degree of freedom (dofs) = 20*3 = 60
Subtracting the rigid body modes, for a rank stiffness matrix, we get 60 - 6 = 54
Therefore the condition for a 20-node hexahedron is given by,

6ng =6p>>54 = ng>9 = Ranksufficient for 3 x3x 3

Therefore the 27-point product rule gives a rank sufficient stiffness matrix K for a
20-node hexahedron.

3. For a 27-node hexahedron (n = 27),

All degree of freedom (dofs) = 27*3 = 81
Subtracting the rigid body modes, for a rank stiffness matrix, we get 81 - 6 = 75
Therefore the condition for a 27-node hexahedron is given by,

6ng =6p°> >75 = ng >125 = Ranksufficientfor 3 x3x 3

Therefore the 27-point product rule gives a rank sufficient stiffness matrix K° for a
27-node hexahedron.

4. For a 64-node hexahedron (n = 64),

All degree of freedom (dofs) = 64*3 = 192
Subtracting the rigid body modes, for a rank stiffness matrix, we get 192 - 6 = 186
Therefore the condition for a 64-node hexahedron is given by,

6ng =6p® > 186 == ng >31 = Ranksufficient for 4 x 4 x 4

Therefore the 64-point product rule gives a rank sufficient stiffness matrix K¢ for a
64-node hexahedron.




