UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Universitat Politècnica De Catalunya, Barcelona MSc. Computational Mechanics Erasmus Mundus

Assignment 5: Isoparametric REPRESENTATION

Computational Structural Mechanics \& Dynamics

Author:
Nikhil Dave

Date: March 8, 2018

On "Isoparametric representation":

Problem 5.1

Consider a three-node bar element referred to the natural coordinate ξ. The two end nodes and the mid node are identified as 1,2 and 3 respectively. The natural coordinates of nodes 1,2 and 3 are $\xi=-1, \xi=1$ and $\xi=0$, respectively. The variation of the shape functions $N_{1}(\xi), N_{2}(\xi)$ and $N_{3}(\xi)$ is sketched in the figure below. These functions must be quadratic polynomials in ξ :

$$
N_{1}^{e}(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2} \quad N_{2}^{e}(\xi)=b_{0}+b_{1} \xi+b_{2} \xi^{2} \quad N_{3}^{e}(\xi)=c_{0}+c_{1} \xi+c_{2} \xi^{2}
$$

Figure 1: Isoparametric shape functions for 3-node bar element (sketch). Node 3 has been drawn at the 1-2 midpoint but it may be moved away from it.
a) Determine the coefficients a_{0}, \ldots, c_{2} using the node value conditions depicted in the figure. For example $N_{1}^{e}=1$ for $\xi=-1$ and 0 for the rest of natural coordinates. The rest of the nodes follow the same scheme.

Solution: Let us consider the first shape function N_{1}^{e}. From figure 1, we can write the node values at each natural coordinate. For example,

$$
\text { For } \begin{align*}
& \xi=-1, N_{1}^{e}(\xi)=1 \Longrightarrow N_{1}^{e}(-1)=a_{0}+a_{1}(-1)+a_{2}(-1)^{2}=1 \\
& a_{0}-a_{1}+a_{2}=1 \tag{1}
\end{align*}
$$

$$
\begin{gather*}
\text { For } \xi=0, N_{1}^{e}(\xi)=0 \Longrightarrow N_{1}^{e}(0)=a_{0}+a_{1}(0)+a_{2}(0)^{2}=0 \\
a_{0}=0 \tag{2}
\end{gather*}
$$

$$
\text { For } \begin{align*}
\xi=1, N_{1}^{e}(\xi)=0 \quad \Longrightarrow N_{1}^{e}(1) & =a_{0}+a_{1}(1)+a_{2}(1)^{2}=0 \\
a_{0}+a_{1}+a_{2} & =0 \tag{3}
\end{align*}
$$

From equations (1), (2) and (3), we get,

$$
a_{0}=0, \quad a_{1}=-\frac{1}{2}, \quad a_{2}=\frac{1}{2}
$$

Thus we have,

$$
N_{1}^{e}(\xi)=-\frac{1}{2} \xi(1-\xi)
$$

Similarly, for the second shape function we can write,

$$
\left.\left.\begin{array}{c}
\text { For } \xi=-1, N_{2}^{e}(\xi)=0 \Longrightarrow N_{2}^{e}(-1)=b_{0}+b_{1}(-1)+b_{2}(-1)^{2}=0 \\
b_{0}-b_{1}+b_{2}=0
\end{array}\right] \begin{array}{c}
\text { For } \xi=0, N_{2}^{e}(\xi)=0 \quad N_{2}^{e}(0)=b_{0}+b_{1}(0)+b_{2}(0)^{2}=0 \\
b_{0}=0
\end{array}\right] \begin{gathered}
\text { For } \xi=1, N_{2}^{e}(\xi)=1 \Longrightarrow N_{2}^{e}(1)=b_{0}+b_{1}(1)+b_{2}(1)^{2}=1 \\
b_{0}+b_{1}+b_{2}=1
\end{gathered}
$$

From equations (4), (5) and (6), we get,

$$
b_{0}=0, \quad b_{1}=\frac{1}{2}, \quad b_{2}=\frac{1}{2}
$$

Thus we have,

$$
N_{2}^{e}(\xi)=\frac{1}{2} \xi(1+\xi)
$$

Lastly, for the third shape function, we repeat the same process,

$$
\begin{gather*}
\text { For } \xi=-1, N_{3}^{e}(\xi)=0 \Longrightarrow N_{3}^{e}(-1)=c_{0}+c_{1}(-1)+c_{2}(-1)^{2}=0 \\
 \tag{7}\\
\qquad \begin{array}{c}
c_{0}-c_{1}+c_{2}=0
\end{array} \\
\qquad \begin{array}{c}
\text { For } \xi=0, N_{3}^{e}(\xi)=1 \Longrightarrow N_{3}^{e}(0)=c_{0}+c_{1}(0)+c_{2}(0)^{2}=1 \\
\\
\text { For } \xi=1, N_{3}^{e}(\xi)=0 \quad \Longrightarrow N_{3}^{e}(1)=c_{0}+c_{1}(1)+c_{2}(1)^{2}=0 \\
c_{0}+c_{1}+c_{2}=0
\end{array} \tag{8}
\end{gather*}
$$

From equations (7), (8) and (9), we get,

$$
c_{0}=1, \quad c_{1}=0, \quad c_{2}=-1
$$

Thus we have,

$$
N_{3}^{e}(\xi)=1-\xi^{2}
$$

Therefore, we get the shape functions as,

$$
N_{1}^{e}(\xi)=-\frac{1}{2} \xi(1-\xi), \quad N_{2}^{e}(\xi)=\frac{1}{2} \xi(1+\xi), \quad N_{3}^{e}(\xi)=1-\xi^{2}
$$

b) Verify that their sum is identically one.

Solution: The shape functions derived in the last section are given as,

$$
N_{1}^{e}(\xi)=-\frac{1}{2} \xi(1-\xi), \quad N_{2}^{e}(\xi)=\frac{1}{2} \xi(1+\xi), \quad N_{3}^{e}(\xi)=1-\xi^{2}
$$

It is clearly seen that the sum of the shape functions is unity i.e.

$$
-\frac{1}{2} \xi+\frac{1}{2} \xi^{2}+\frac{1}{2} \xi+\frac{1}{2} \xi^{2}+1-\xi^{2}=1
$$

Therefore it is verified,

$$
N_{1}^{e}(\xi)+N_{2}^{e}(\xi)+N_{3}^{e}(\xi)=1
$$

c) Calculate their derivatives respect to the natural coordinates.

Solution: Now, we calculate the derivatives of the shape functions with respect to the natural coordinates,

$$
\begin{aligned}
\frac{d N_{1}^{e}(\xi)}{d \xi}=\frac{d\left(-\frac{1}{2} \xi+\frac{1}{2} \xi^{2}\right)}{d \xi} & \Longrightarrow \frac{d N_{1}^{e}(\xi)}{d \xi}=-\frac{1}{2}+\xi \\
\frac{d N_{2}^{e}(\xi)}{d \xi}=\frac{d\left(\frac{1}{2} \xi+\frac{1}{2} \xi^{2}\right)}{d \xi} & \Longrightarrow \frac{d N_{2}^{e}(\xi)}{d \xi}=\frac{1}{2}+\xi \\
\frac{d N_{3}^{e}(\xi)}{d \xi}=\frac{d\left(1-\xi^{2}\right)}{d \xi} & \Longrightarrow \frac{d N_{3}^{e}(\xi)}{d \xi}=-2 \xi
\end{aligned}
$$

It is interesting to note that the sum of the derivatives of the shape functions is also unity, i.e.

$$
\frac{d N_{1}^{e}(\xi)}{d \xi}+\frac{d N_{2}^{e}(\xi)}{d \xi}+\frac{d N_{3}^{e}(\xi)}{d \xi}=1
$$

Problem 5.2

A five node quadrilateral element has the nodal configuration shown in the figure with two perspective views of N_{1}^{e} and N_{5}^{e}. Find five shape functions $N_{i}^{e}, i=1, \ldots, 5$ that satisfy compatibility and also verify that their sum is unity.

Figure 2

Solution: Firstly, we use the line-product method for finding the shape function for node 5 . From figure 2 we can examine that,

$$
\begin{equation*}
N_{5}^{e}=c_{1} L_{1-2} L_{2-3} L_{3-4} L_{4-1} \tag{10}
\end{equation*}
$$

It is by construction that this expression vanishes over the nodes $1,2,3,4$ (or over the sides 1-2, 2-3, 3-4 and 4-1) and can be normalised to unity at node 5 by adjusting the value of c_{1}. The equation for the four sides, 1-2, 2-3, 3-4 and 4-1, are known to be $\eta=-1, \xi=1, \eta=1$ and $\xi=-1$ respectively. Using these in equation (10), we get,

$$
N_{5}^{e}(\xi, \eta)=c_{1}(\eta+1)(\eta-1)(\xi+1)(\xi-1)
$$

We evaluate this expression at node 5 , to find the value of c_{1}, which has natural coordinates of $\xi=\eta=0$.

$$
N_{5}^{e}(0,0)=c_{1}(1)(-1)(1)(-1)=1
$$

Thus, $c_{1}=1$ and shape function for node 5 is,

$$
N_{5}^{e}(\xi, \eta)=(\eta+1)(\eta-1)(\xi+1)(\xi-1)
$$

Now, we know the corner shape functions $\bar{N}_{i}^{e}(\xi, \eta)$ with $i=1,2,3,4$ for the 4 -node quadrilateral are given as,

$$
\begin{aligned}
\bar{N}_{1}^{e} & =\frac{1}{4}(1-\eta)(1-\xi) \\
\bar{N}_{2}^{e} & =\frac{1}{4}(1-\eta)(1+\xi) \\
\bar{N}_{3}^{e} & =\frac{1}{4}(1+\eta)(1+\xi) \\
\bar{N}_{4}^{e} & =\frac{1}{4}(1+\eta)(1-\xi)
\end{aligned}
$$

Despite the fact that the shape functions of the corner nodes resembles the shape functions of a 4-node quadrilateral, they are not the same i.e. $N_{i} \neq \bar{N}_{i}$. For example, the corner shape function N_{1}^{e} shown in figure 2 must vanish at node 5 (with $\xi=\eta$ $=0$). However it takes a value of $1 / 4$. This is illustrated in table 1 .

Node	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\boldsymbol{N}_{\mathbf{1}}^{e}$	1	0	0	0	$\frac{1}{4}$
$\boldsymbol{N}_{\mathbf{2}}^{e}$	0	1	0	0	$\frac{1}{4}$
\boldsymbol{N}_{3}^{e}	0	0	1	0	$\frac{1}{4}$
\boldsymbol{N}_{4}^{e}	0	0	0	1	$\frac{1}{4}$
$\boldsymbol{N}_{\mathbf{5}}^{e}$	0	0	0	0	1

Table 1: Corner shape functions not vanishing at node 5

In order to combat this situation, we define a factor α in the expression for the corner shape functions so that all corner N_{i}^{e} (for $\mathrm{i}=1,2,3,4$) vanish at node 5 . Thus,

$$
\begin{equation*}
N_{i}^{e}=\bar{N}_{i}^{e}+\alpha N_{5}^{e} \quad \text { for } \quad i=1,2,3,4 \tag{11}
\end{equation*}
$$

The use of the factor α in the corner shape functions is shown in table 2 , where it is important to note that for the corner shape functions to vanish at node 5,

$$
\frac{1}{4}+\alpha=0 \quad \Longrightarrow \quad \alpha=-\frac{1}{4}
$$

Node	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\boldsymbol{N}_{\mathbf{1}}^{e}$	1	0	0	0	$\frac{1}{4}+\alpha$
$\boldsymbol{N}_{\mathbf{2}}^{e}$	0	1	0	0	$\frac{1}{4}+\alpha$
$\boldsymbol{N}_{\mathbf{3}}^{e}$	0	0	1	0	$\frac{1}{4}+\alpha$
$\boldsymbol{N}_{\mathbf{4}}^{e}$	0	0	0	1	$\frac{1}{4}+\alpha$
$\boldsymbol{N}_{\mathbf{5}}^{e}$	0	0	0	0	1

Table 2: Corner shape functions using the factor α which vanishes them for $\alpha=-\frac{1}{4}$

Therefore, using $\alpha=-\frac{1}{4}$ in the equation (11), we get the shape functions of a 5 -node quadrilateral element that satisfy compatibility,

$$
\begin{array}{r}
N_{1}^{e}=\frac{1}{4}(1-\eta)(1-\xi)-\frac{1}{4}(\eta+1)(\eta-1)(\xi+1)(\xi-1) \\
N_{2}^{e}=\frac{1}{4}(1-\eta)(1+\xi)-\frac{1}{4}(\eta+1)(\eta-1)(\xi+1)(\xi-1) \\
N_{3}^{e}=\frac{1}{4}(1+\eta)(1+\xi)-\frac{1}{4}(\eta+1)(\eta-1)(\xi+1)(\xi-1) \\
N_{4}^{e}=\frac{1}{4}(1+\eta)(1-\xi)-\frac{1}{4}(\eta+1)(\eta-1)(\xi+1)(\xi-1) \\
N_{5}^{e}=(\eta+1)(\eta-1)(\xi+1)(\xi-1) \tag{16}\\
\hline
\end{array}
$$

Also, it is verified that the sum of the shape functions is unity i.e.

$$
\sum_{i=1}^{5} N_{i}^{e}=1
$$

Problem 5.3

On "Convergence requirements":
Which minimum integration rules of Gauss-product type gives a rank sufficient stiffness matrix for these elements:

1. the 8 -node hexahedron
2. the 20 -node hexahedron
3. the 27 -node hexahedron
4. the 64 -node hexahedron

Solution: Let us assume that the Gaussian formula is used with stress-strain matrix \boldsymbol{E} constant over the element. Then the numerical integration of the stiffness matrix is given by,

$$
\begin{equation*}
\boldsymbol{K}^{e}=\sum_{i=1}^{p_{1}} \sum_{j=1}^{p_{2}} \sum_{k=1}^{p_{3}} w_{i j k} \boldsymbol{B}_{i j k}^{T} \boldsymbol{E} \boldsymbol{B}_{i j k} J_{i j k} \tag{17}
\end{equation*}
$$

where the number of Gauss points along the ξ, η and ν directions is denoted by p_{1}, p_{2} and p_{3} respectively.

The rule is identified as $p_{1} \times p_{2} \times p_{3}$ and has $p_{1} p_{2} p_{3}$ points. For conventional hexahedral elements, the number of integration points is taken the same in all directions i.e. $p=p_{1}=p_{2}=p_{3}$, and the total number of Gauss points is $n_{G}=p^{3}$, This is known as the isotropic product rule and each point adds 6 to the stiffness matrix rank.

1. For a 8 -node hexahedron $(n=8)$,

All degree of freedom (dofs) $=8 * 3=24$
Subtracting the rigid body modes, for a rank stiffness matrix, we get 24-6=18
Therefore the condition for a 8 -node hexahedron is given by,

$$
6 n_{G}=6 p^{3} \geq 18 \quad \Longrightarrow n_{G} \geq 3 \quad \Longrightarrow \text { Rank sufficient for } 2 \times 2 \times 2
$$

Therefore the 8 -point product rule gives a rank sufficient stiffness matrix \boldsymbol{K}^{e} for a 8 -node hexahedron.
2. For a 20 -node hexahedron $(n=20)$,

All degree of freedom (dofs) $=20 * 3=60$
Subtracting the rigid body modes, for a rank stiffness matrix, we get 60-6 $=54$ Therefore the condition for a 20 -node hexahedron is given by,

$$
6 n_{G}=6 p^{3} \geq 54 \quad \Longrightarrow n_{G} \geq 9 \quad \Longrightarrow \text { Rank sufficient for } 3 \times 3 \times 3
$$

Therefore the 27-point product rule gives a rank sufficient stiffness matrix \boldsymbol{K}^{e} for a 20 -node hexahedron.
3. For a 27 -node hexahedron $(n=27)$,

All degree of freedom (dofs) $=27 * 3=81$
Subtracting the rigid body modes, for a rank stiffness matrix, we get $81-6=75$
Therefore the condition for a 27 -node hexahedron is given by,

$$
6 n_{G}=6 p^{3} \geq 75 \quad \Longrightarrow n_{G} \geq 12.5 \quad \Longrightarrow \text { Rank sufficient for } 3 \times 3 \times 3
$$

Therefore the 27-point product rule gives a rank sufficient stiffness matrix \boldsymbol{K}^{e} for a 27-node hexahedron.
4. For a 64-node hexahedron $(n=64)$,

All degree of freedom (dofs) $=64 * 3=192$
Subtracting the rigid body modes, for a rank stiffness matrix, we get 192-6 = 186 Therefore the condition for a 64-node hexahedron is given by,

$$
6 n_{G}=6 p^{3} \geq 186 \quad \Longrightarrow n_{G} \geq 31 \quad \Longrightarrow \text { Rank sufficient for } 4 \times 4 \times 4
$$

Therefore the 64-point product rule gives a rank sufficient stiffness matrix \boldsymbol{K}^{e} for a 64-node hexahedron.

