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CSMD - Assignment 5: Isoparametric representation Nikhil Dave

On “Isoparametric representation”:

Problem 5.1

Consider a three-node bar element referred to the natural coordinate ξ. The two
end nodes and the mid node are identified as 1, 2 and 3 respectively. The natural
coordinates of nodes 1, 2 and 3 are ξ = −1, ξ = 1 and ξ = 0, respectively. The
variation of the shape functions N1(ξ), N2(ξ) and N3(ξ) is sketched in the figure
below. These functions must be quadratic polynomials in ξ:

N e
1 (ξ) = a0 + a1ξ + a2ξ

2 N e
2 (ξ) = b0 + b1ξ + b2ξ

2 N e
3 (ξ) = c0 + c1ξ + c2ξ

2

Figure 1: Isoparametric shape functions for 3-node bar element (sketch). Node 3 has
been drawn at the 1-2 midpoint but it may be moved away from it.

a) Determine the coefficients a0, ..., c2 using the node value conditions depicted in
the figure. For example N e

1 = 1 for ξ = −1 and 0 for the rest of natural coordinates.
The rest of the nodes follow the same scheme.

Solution: Let us consider the first shape function N e
1 . From figure 1, we can write

the node values at each natural coordinate. For example,

For ξ = −1, N e
1 (ξ) = 1 =⇒ N e

1 (−1) = a0 + a1(−1) + a2(−1)2 = 1

a0 − a1 + a2 = 1 (1)

For ξ = 0, N e
1 (ξ) = 0 =⇒ N e

1 (0) = a0 + a1(0) + a2(0)2 = 0

a0 = 0 (2)

For ξ = 1, N e
1 (ξ) = 0 =⇒ N e

1 (1) = a0 + a1(1) + a2(1)2 = 0

a0 + a1 + a2 = 0 (3)

From equations (1), (2) and (3), we get,

a0 = 0, a1 = −1

2
, a2 =

1

2

2
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Thus we have,

N e
1 (ξ) = −1

2
ξ(1− ξ)

Similarly, for the second shape function we can write,

For ξ = −1, N e
2 (ξ) = 0 =⇒ N e

2 (−1) = b0 + b1(−1) + b2(−1)2 = 0

b0 − b1 + b2 = 0 (4)

For ξ = 0, N e
2 (ξ) = 0 =⇒ N e

2 (0) = b0 + b1(0) + b2(0)2 = 0

b0 = 0 (5)

For ξ = 1, N e
2 (ξ) = 1 =⇒ N e

2 (1) = b0 + b1(1) + b2(1)2 = 1

b0 + b1 + b2 = 1 (6)

From equations (4), (5) and (6), we get,

b0 = 0, b1 =
1

2
, b2 =

1

2

Thus we have,

N e
2 (ξ) =

1

2
ξ(1 + ξ)

Lastly, for the third shape function, we repeat the same process,

For ξ = −1, N e
3 (ξ) = 0 =⇒ N e

3 (−1) = c0 + c1(−1) + c2(−1)2 = 0

c0 − c1 + c2 = 0 (7)

For ξ = 0, N e
3 (ξ) = 1 =⇒ N e

3 (0) = c0 + c1(0) + c2(0)2 = 1

c0 = 1 (8)

For ξ = 1, N e
3 (ξ) = 0 =⇒ N e

3 (1) = c0 + c1(1) + c2(1)2 = 0

c0 + c1 + c2 = 0 (9)

From equations (7), (8) and (9), we get,

c0 = 1, c1 = 0, c2 = −1

Thus we have,
N e

3 (ξ) = 1− ξ2

Therefore, we get the shape functions as,

N e
1 (ξ) = −1

2
ξ(1− ξ), N e

2 (ξ) =
1

2
ξ(1 + ξ), N e

3 (ξ) = 1− ξ2

3
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b) Verify that their sum is identically one.

Solution: The shape functions derived in the last section are given as,

N e
1 (ξ) = −1

2
ξ(1− ξ), N e

2 (ξ) =
1

2
ξ(1 + ξ), N e

3 (ξ) = 1− ξ2

It is clearly seen that the sum of the shape functions is unity i.e.

−1

2
ξ +

1

2
ξ2 +

1

2
ξ +

1

2
ξ2 + 1− ξ2 = 1

Therefore it is verified,
N e

1 (ξ) +N e
2 (ξ) +N e

3 (ξ) = 1

c) Calculate their derivatives respect to the natural coordinates.

Solution: Now, we calculate the derivatives of the shape functions with respect to
the natural coordinates,

dN e
1 (ξ)

dξ
=
d(−1

2
ξ +

1

2
ξ2)

dξ
=⇒ dN e

1 (ξ)

dξ
= −1

2
+ ξ

dN e
2 (ξ)

dξ
=
d(

1

2
ξ +

1

2
ξ2)

dξ
=⇒ dN e

2 (ξ)

dξ
=

1

2
+ ξ

dN e
3 (ξ)

dξ
=
d(1− ξ2)

dξ
=⇒ dN e

3 (ξ)

dξ
= −2ξ

It is interesting to note that the sum of the derivatives of the shape functions is also
unity, i.e.

dN e
1 (ξ)

dξ
+
dN e

2 (ξ)

dξ
+
dN e

3 (ξ)

dξ
= 1
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Problem 5.2

A five node quadrilateral element has the nodal configuration shown in the figure
with two perspective views of N e

1 and N e
5 . Find five shape functions N e

i , i = 1, ..., 5
that satisfy compatibility and also verify that their sum is unity.

Figure 2

Solution: Firstly, we use the line-product method for finding the shape function for
node 5. From figure 2 we can examine that,

N e
5 = c1 L1−2 L2−3 L3−4 L4−1 (10)

It is by construction that this expression vanishes over the nodes 1, 2, 3, 4 (or over
the sides 1-2, 2-3, 3-4 and 4-1) and can be normalised to unity at node 5 by adjusting
the value of c1. The equation for the four sides, 1-2, 2-3, 3-4 and 4-1, are known to
be η = −1, ξ = 1, η = 1 and ξ = −1 respectively. Using these in equation (10), we
get,

N e
5 (ξ, η) = c1 (η + 1) (η − 1) (ξ + 1) (ξ − 1)

We evaluate this expression at node 5, to find the value of c1, which has natural
coordinates of ξ = η = 0.

N e
5 (0, 0) = c1 (1) (−1) (1) (−1) = 1

Thus, c1 = 1 and shape function for node 5 is,

N e
5 (ξ, η) = (η + 1) (η − 1) (ξ + 1) (ξ − 1)

Now, we know the corner shape functions N̄ e
i (ξ, η) with i = 1, 2, 3, 4 for the 4-node

quadrilateral are given as,

N̄ e
1 =

1

4
(1− η) (1− ξ)

N̄ e
2 =

1

4
(1− η) (1 + ξ)

N̄ e
3 =

1

4
(1 + η) (1 + ξ)

N̄ e
4 =

1

4
(1 + η) (1− ξ)
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Despite the fact that the shape functions of the corner nodes resembles the shape
functions of a 4-node quadrilateral, they are not the same i.e. Ni 6= N̄i. For example,
the corner shape function N e

1 shown in figure 2 must vanish at node 5 (with ξ = η
= 0). However it takes a value of 1/4. This is illustrated in table 1.

Node 1 2 3 4 5

Ne
1 1 0 0 0

1

4

Ne
2 0 1 0 0

1

4

Ne
3 0 0 1 0

1

4

Ne
4 0 0 0 1

1

4

Ne
5 0 0 0 0 1

Table 1: Corner shape functions not vanishing at node 5

In order to combat this situation, we define a factor α in the expression for the corner
shape functions so that all corner N e

i (for i = 1, 2, 3, 4) vanish at node 5. Thus,

N e
i = N̄ e

i + α N e
5 for i = 1, 2, 3, 4 (11)

The use of the factor α in the corner shape functions is shown in table 2, where it is
important to note that for the corner shape functions to vanish at node 5,

1

4
+ α = 0 =⇒ α = −1

4

Node 1 2 3 4 5

Ne
1 1 0 0 0

1

4
+ α

Ne
2 0 1 0 0

1

4
+ α

Ne
3 0 0 1 0

1

4
+ α

Ne
4 0 0 0 1

1

4
+ α

Ne
5 0 0 0 0 1

Table 2: Corner shape functions using the factor α which vanishes them for α = −1

4
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Therefore, using α = −1

4
in the equation (11), we get the shape functions of a

5-node quadrilateral element that satisfy compatibility,

N e
1 =

1

4
(1− η) (1− ξ)− 1

4
(η + 1) (η − 1) (ξ + 1) (ξ − 1)

N e
2 =

1

4
(1− η) (1 + ξ)− 1

4
(η + 1) (η − 1) (ξ + 1) (ξ − 1)

N e
3 =

1

4
(1 + η) (1 + ξ)− 1

4
(η + 1) (η − 1) (ξ + 1) (ξ − 1)

N e
4 =

1

4
(1 + η) (1− ξ)− 1

4
(η + 1) (η − 1) (ξ + 1) (ξ − 1)

N e
5 = (η + 1) (η − 1) (ξ + 1) (ξ − 1)

(12)

(13)

(14)

(15)

(16)

Also, it is verified that the sum of the shape functions is unity i.e.

5∑
i=1

N e
i = 1

Problem 5.3

On “Convergence requirements”:

Which minimum integration rules of Gauss-product type gives a rank sufficient stiff-
ness matrix for these elements:

1. the 8-node hexahedron

2. the 20-node hexahedron

3. the 27-node hexahedron

4. the 64-node hexahedron

Solution: Let us assume that the Gaussian formula is used with stress-strain matrix
E constant over the element. Then the numerical integration of the stiffness matrix
is given by,

Ke =

p1∑
i=1

p2∑
j=1

p3∑
k=1

wijk B
T
ijk E Bijk Jijk (17)

where the number of Gauss points along the ξ, η and ν directions is denoted by p1, p2
and p3 respectively.

The rule is identified as p1 × p2 × p3 and has p1p2p3 points. For conventional hexa-
hedral elements, the number of integration points is taken the same in all directions
i.e. p = p1 = p2 = p3, and the total number of Gauss points is nG = p3, This is known
as the isotropic product rule and each point adds 6 to the stiffness matrix rank.

7
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1. For a 8-node hexahedron (n = 8),

All degree of freedom (dofs) = 8*3 = 24
Subtracting the rigid body modes, for a rank stiffness matrix, we get 24 - 6 = 18
Therefore the condition for a 8-node hexahedron is given by,

6nG = 6p3 ≥ 18 =⇒ nG ≥ 3 =⇒ Rank sufficient for 2× 2× 2

Therefore the 8-point product rule gives a rank sufficient stiffness matrix Ke for a
8-node hexahedron.

2. For a 20-node hexahedron (n = 20),

All degree of freedom (dofs) = 20*3 = 60
Subtracting the rigid body modes, for a rank stiffness matrix, we get 60 - 6 = 54
Therefore the condition for a 20-node hexahedron is given by,

6nG = 6p3 ≥ 54 =⇒ nG ≥ 9 =⇒ Rank sufficient for 3× 3× 3

Therefore the 27-point product rule gives a rank sufficient stiffness matrix Ke for a
20-node hexahedron.

3. For a 27-node hexahedron (n = 27),

All degree of freedom (dofs) = 27*3 = 81
Subtracting the rigid body modes, for a rank stiffness matrix, we get 81 - 6 = 75
Therefore the condition for a 27-node hexahedron is given by,

6nG = 6p3 ≥ 75 =⇒ nG ≥ 12.5 =⇒ Rank sufficient for 3× 3× 3

Therefore the 27-point product rule gives a rank sufficient stiffness matrix Ke for a
27-node hexahedron.

4. For a 64-node hexahedron (n = 64),

All degree of freedom (dofs) = 64*3 = 192
Subtracting the rigid body modes, for a rank stiffness matrix, we get 192 - 6 = 186
Therefore the condition for a 64-node hexahedron is given by,

6nG = 6p3 ≥ 186 =⇒ nG ≥ 31 =⇒ Rank sufficient for 4× 4× 4

Therefore the 64-point product rule gives a rank sufficient stiffness matrix Ke for a
64-node hexahedron.
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