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 “Isoparametric representation” 
 
 
Problem 5.1 
 
Consider a three-node bar element referred to the natural coordinate ξ. The two end nodes and 
the mid node are identified as 1, 2 and 3 respectively. The natural coordinates of nodes 1, 2 and 
3 are ξ = –1, ξ = 1 and ξ = 0, respectively. The variation of the shape functions N1(ξ), N2(ξ) and 
N3(ξ) is sketched in the figure below. These functions must be quadratic polynomials in ξ: 
 

𝑁1𝑒(𝜉) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉2     𝑁2𝑒(𝜉) = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜉2     𝑁3𝑒(𝜉) = 𝑐0 + 𝑐1𝜉 + 𝑐2𝜉2 
 

 
Figure.- Isoparametric shape functions for 3-node bar element (sketch). 

Node 3 has been drawn at the 1-2 midpoint but it may be moved away from it. 
 
 
a) Determine the coefficients a0,…,c2 using the node value conditions depicted in figure. For 
exemple Ne

1 = 1 for ξ=1 and 0 for the rest of natural coordinates. The rest of the nodes follow 
the same scheme. 
 
b) Verify that their sum is identically one. 
 
c) Calculate their derivatives respect to the natural coordinates. 
 
 
 
Problem 5.2 
 
A five node quadrilateral element has the nodal configuration shown if the figure with two 
perspective views of Ne

1 and Ne
5. Find five shape functions Ne

i, i=1,…,5 that satisfy 
compatibility and also verify that their sum is unity. 

 
 
Hint: develop N5(ξ,η) first for the 5-node quad using the line-product method. Then the corner 
shape functions Ni(ξ,η), i=1,2,3,4, for the 4-node quad (already given in the notes). Finally 
combine Ni = Ni + αN5 determining α so that all Ni vanish node 5. Check that N1 + N2 + N3 + 
N4 + N5 = 1 identically. 



Master of Science in Computational Mechanics 2018 
Computational Structural Mechanics and Dynamics 

 “Convergence rerquirements” 
 
 
Problem 5.3 
 
Which minimum integration rules of Gauss-product type gives a rank sufficient stiffness matrix 
for these elements: 
 
1. the 8-node hexahedron 
2. the 20-node hexahedron 
3. the 27-node hexahedron 
4. the 64-node hexahedron 
 
 
 
 
 
 
 
 
 
 
 
Date of Assignment: 5 / 03 / 2018 
Date of Submission:  12 / 03 / 2018 
 
The assignment must be submitted as a pdf file named As5-Surname.pdf to the 
CIMNE virtual center. 
 



5.1 Consider a three node bar element to natural coordinate ζ. The natural
coordinate of nodes 1,2 and 3 are ζ = −1, ζ = 0 and ζ = 1 respectively. These
functions must be quadratic polynomials in ζ

a) For Node 1

N e
1 = a0 + a1ζ + a2ζ

2

From the above figure it can be seen that the values for the shape function for node 1 are
N e

1 (ζ = −1) = 1
N e

1 (ζ = 0) = 0
N e

1 (ζ = 1) = 0
If we use the values of node values at the natural coordinates we can find out values for constants
a0, a1 and a2
N e

1 (ζ = −1) = 1 = a0 − a1 + a2
N e

1 (ζ = 0) = 0 = a0
N e

1 (ζ = 1) = 0 = a0 + a1 + a2
Hence, the values for constants are as follows

a0 = 0, a1 =
−1

2
, a2 =

1

2
Therefore the shape function for node 1 is

N e
1 =

−ζ
2

+
ζ2

2

For Node 2

N e
2 = b0 + b1ζ + b2ζ

2

3



From the above figure it can be seen that the values for the shape function for node 1 are
N e

2 (ζ = −1) = 0
N e

2 (ζ = 0) = 0
N e

2 (ζ = 1) = 1
If we use the values of node values at the natural coordinates we can find out values for constants b0, b1
and b2
N e

2 (ζ = −1) = 0 = b0 − b1 + b2
N e

2 (ζ = 0) = 1 = b0
N e

2 (ζ = 1) = 0 = b0 + b1 + b2
Hence, the values for constants are as follows

b0 = 0, b1 = b2 =
1

2
Therefore the shape function for node 2 is

N e
2 =

ζ

2
+
ζ2

2

For Node 3

N e
3 = c0 + c1ζ + c2ζ

2

From the above figure it can be seen that the values for the shape function for node 1 are
N e

3 (ζ = −1) = 0
N e

3 (ζ = 0) = 1
N e

3 (ζ = 1) = 0
If we use the values of node values at the natural coordinates we can find out values for constants c0, c1
and c2
N e

3 (ζ = −1) = 0 = c0 − c1 + c2
N e

3 (ζ = 0) = 1 = c0
N e

3 (ζ = 1) = 0 = c0 + c1 + c2
Therefore the shape function for node 3 is

N e
3 = 1− ζ2

b) Verify the sum of shape functions is one

N e
1 +N e

2 +N e
3 = (

−ζ
2

+
ζ2

2
) + (

ζ

2
+
ζ2

2
) + (1− ζ2) = 1

4



Hence it is verified that the sun of shape functions is 1. Thus proving that the shape functions satisfy
compatibility equation

c) The derivatives with respect t natural coordinates

∂N e
1

∂ζ
=

−1

2
+ ζ

∂N e
2

∂ζ
=

1

2
+ ζ

∂N e
3

∂ζ
= −2ζ

5.2 A five node quadrilateral element has the nodal configuration shown in the
figure. To find shape functions for the same

From the lecture notes, we already have the shape functions for the four corner nodes. Which are
as follows

N e
1 =

1
4(1− ζ)(1− η)

Ne
2 =

1
4(1 + ζ)(1− η)

Ne
3 =

1
4(1 + ζ)(1 + η)

Ne
4 =

1
4(1− ζ)(1 + η)

We calculate the shape function for node 5 as follows
N5(ζ, η) = c5(1− ζ)(1− η)(1 + ζ)(1 + η) = c5(1− ζ2)(1− η2)
From the figure it is clear that the value of N5 at various natural coordinates
N5(0, 0) = c5(1− 02)(1− 02)
∴ c5 = 1

∴ N5 = (1− ζ2)(1− η2)

It can be seen from the figure that for 4 node quadrilateral that shape function for nodes 1, 2, 3, 4 does
not become zero at node 5 . Hence we combine Ni = N i + αN5, determining α so that all Ni vanish
node 5. This simply means that we modify the shape functions of 4 node quadrilateral so that shape
functions for respective nodes (1, 2, 3, 4) become zero at natural coordinates (0,0). Ni = Ni + αN5

N1 = N1 + αN5 =
1
4(1− ζ)(1− η) + α(1− ζ2)(1− η2)

For node 1, the value of N1 is zero at node 5 (0, 0).
0 = 1

4(1− 0)(1− 0) + α(1− 02)(1− 02)
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∴ α = −−1

4
From the above equation and repeating this calculation for each node it is found out that

the value of alpha for each node shape function is
−1

4
. Therefore the new shape functions for 5 node

quadrilateral are as follows

N1 =
1
4(1− ζ)(1− η)− 1

4
(1− ζ2)(1− η2)

N2 =
1
4(1 + ζ)(1− η)− 1

4
(1− ζ2)(1− η2)

N3 =
1
4(1 + ζ)(1 + η)− 1

4
(1− ζ2)(1− η2)

N4 =
1
4(1− ζ)(1 + η)− 1

4
(1− ζ2)(1− η2)

N5 = (1− ζ2)(1− η2)

5.3 Finding minimum integration rules of Gauss Product type type gives a rank
sufficient matrix for following elements

To solve this problem we are going to consider following terms
nF = number of element degrees of freedom
nR = number of independent rigid body modes
r = rank of stiffness matrix Ke

nE = order of stress strain matrix E.
nG = minimum number of Gauss Points
We know that for an element to be rank sufficient, r = nF - nR. And furthermore if the we want to
numerically integrate, and to attain rank sufficiency, the product nEnG ≥ nF − nR
Using all the above condition, the minimum Gauss point, and number of Gauss points actual used are
calculated
1) 8 node hexahedron

nF = 8 ∗ 3 = 24
nR = 6
nE = 6
nG = ?
r = nF - nR = 24− 6 = 18
nE nG ≥ nF - nR
6.nG ≥ 18
The minimum nG = 3
The minimum Gauss integration rule to be used for rank sufficiency is 2× 2× 2
2) 20 node hexahedron
nF = 20 ∗ 3 = 60
nR = 6
nE = 6
nG = ?
r = nF - nR = 60− 6 = 54
nEnG ≥ nF − nR
6.nG ≥ 54
The minimum nG = 9
The minimum Gauss integration rule to be used for rank sufficiency is 3× 3× 3
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3) 27 node hexahedron
nF = 27 ∗ 3 = 81
nR = 6
nE = 6
nG = ?
r = nF - nR = 81− 6 = 75
nEnG ≥ nF − nR
6.nG ≥ 75 The minimum nG = 12.5
The minimum Gauss integration rule to be used for rank sufficiency is 3× 3× 3
4) 64 node hexahedron

nF = 64 ∗ 3 = 192
nR = 6
nE = 6
nG = ?
r = nF - nR = 192− 6 = 186
nEnG ≥ nF − nR
6.nG ≥ 186 The minimum nG = 31
The minimum Gauss integration rule to be used for rank sufficiency is 4× 4× 4
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