Master's Degree Numerical
Methods in Engineering

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
barcelonatech

Computational Structural Mechanics and Dynamics

Assignment 5:
 Convergence requirements

Author:
Aren Khaloian

Professor:
Miguel Cervera

March $16^{\text {th }}, 2020$
Academic Year 2019-2020

1 Assignment 5.1

The isoparametric definition of the straight-node bar element in its local system x is,

$$
\left[\begin{array}{l}
1 \\
x \\
u
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{c}
N_{1}^{e}(\xi) \\
N_{2}^{e}(\xi) \\
N_{3}^{e}(\xi)
\end{array}\right]
$$

Here ξ is the isoparametric coordinate that takes the values $-1,1$ and 0 at nodes 1,2 and 3 respectively, while N_{1}^{e}, N_{2}^{e} and N_{3}^{e} are the shape functions for a bar element.

For simplicity, take $\overline{x_{1}}=0, \overline{x_{2}}=L, \overline{x_{3}}=l / 2+l \alpha$. Here l is the bar length and α a parameter that characterizes how far node 3 is away from the midpoint location $\bar{x}=l / 2$.

Show that the minimum α (minimal in absolute value sense) for which $J=\frac{d \bar{x}}{s \xi}$ vanishes at a point in the element are $+_{-} 1 / 4$ (the quarter points). Interpret this result as a singularity by showing that the axial strain becomes infinite at an end point.

1. In the first step we have to build up the shape functions for the quadratic 1 D element in terms of ξ :

$$
\begin{aligned}
& N_{1}=\frac{\left(\xi_{2}-\xi\right)\left(\xi_{3}-\xi\right)}{\left(\xi_{2}-\xi_{1}\right)\left(\xi_{3}-\xi_{1}\right)} \\
& N_{2}=\frac{\left(\xi_{3}-\xi\right)\left(\xi_{1}-\xi\right)}{\left(\xi_{3}-\xi_{2}\right)\left(\xi_{1}-\xi_{2}\right)} \\
& N_{3}=\frac{\left(\xi_{1}-\xi\right)\left(\xi_{2}-\xi\right)}{\left(\xi_{1}-\xi_{3}\right)\left(\xi_{2}-\xi_{3}\right)}
\end{aligned}
$$

Solving the N for $\xi_{1}=-1, \xi_{2}=1, \xi_{3}=0$ we will have:

$$
N_{1}=\xi^{2}-\xi / 2, N_{2}=\xi^{2}+\xi / 2, N_{3}=1-\xi^{2}
$$

We know that:

$$
x=x_{1} d N_{1} / d \xi+x_{2} d N_{2} / d \xi+x_{3} d N_{3} / d \xi
$$

Using the given values for the x coordinates of the nodes in the physical world. The jacobian will be the sum of the derivatives of the shape functions in ξ

$$
\begin{gathered}
J=0(\xi-1 / 2)+l(\xi+1 / 2)+(l / 2+l \alpha)(-2 \xi) \\
J=\frac{l(1-4 \alpha \xi)}{2}
\end{gathered}
$$

In order for the jacobian to be zero and considering that $-1<\xi<1$ the only case the the term of $4 \alpha \xi=0$ is to $\alpha=-1 / 4,1 / 4$ so that with $-1<\xi<1$ the term will be zero.

For calculating the axial strain we need to calculate the matrix "B" which is $B=J^{-1}\left[\frac{d N_{1}}{d \xi} \frac{d N_{2}}{d \xi} \frac{d N_{3}}{d \xi}\right]$. The axial strain is calculated as:

$$
\epsilon=B u=B\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

Because our jacobian is a one by one matrix then the inverse will be simply the inverse of the expression and matrix B can be calculated as for $\alpha=-1 / 4,1 / 4$:

$$
B=\left[\frac{2}{l(1-(-1))}(\xi-1 / 2) \quad \frac{2}{l(1-1)}(\xi+1 / 2) \quad \frac{2}{l(1-0)}(-2 \xi)\right]
$$

The axial strain will be:

$$
\epsilon=\left[\frac{2}{l(1-(-1))}(\xi-1 / 2) \quad \frac{2}{l(1-1)}(\xi+1 / 2) \quad \frac{2}{l(1-0)}(-2 \xi)\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

Here in the second term of the B matrix we can see that the we have a term divided by zero which will cause our strain to explode.

2 Assignment 5.2

Extend the results obtained from the previous Exercise for a 9-node plane stress element. The element is initially a perfect square, nodes $5,6,7,8$ are at the midpoint of the sides $1-2,2-3$, $3-4$ and $4-1$, respectively, and 9 at the center of the square.

Move node 5 tangentially towards 2 until the Jacobian determinant at 2 vanishes. This result is important in the construction of "singular elements" for fracture mechanics.

In the first step we have to calculate the shape functions of the 9 node quadrilateral element.

Figure 1: nine nod quadrilateral element

Calculating the shape functions we will have:

$$
\begin{gathered}
N_{1}=\frac{\xi(\xi-1) \eta(\eta-1)}{4}, N_{2}=\frac{(\xi+1) \xi \eta(\eta-1)}{4} \\
N_{3}=\frac{(\xi+1) \xi \eta(\eta+1)}{4}, N_{4}=\frac{(\xi-1) \xi \eta(\eta+1)}{4} \\
N_{5}=\frac{(\xi+1)(\xi-1) \eta(\eta-1)}{-2}, N_{6}=\frac{(\xi+1) \xi(\eta-1)(\eta+1)}{-2} \\
N_{7}=\frac{(\xi+1)(\xi-1) \eta(\eta+1)}{-2}, N_{8}=\frac{(\xi-1) \xi(\eta-1)(\eta+1)}{-2} \\
N_{9}=\frac{(\xi+1)(\xi-1)(\eta-1)(\eta+1)}{1}
\end{gathered}
$$

The jacobian can be calculated as:

$$
J=\left[\begin{array}{ll}
x_{i} \Sigma \frac{d N_{i}}{d \xi} & y_{i} \Sigma \frac{d N_{i}}{d \xi} \\
x_{i} \Sigma \frac{d N_{i}}{d \eta} & y_{i} \Sigma \frac{d N_{i}}{d \eta}
\end{array}\right]
$$

Calculating the jacobian with the derivatives of the shape functions we will have:
$J(1,1)=x_{1}(2 \xi-1)\left(\eta^{2}-\eta\right) / 4+x_{2}(2 \xi+1)\left(\eta^{2}-\eta\right) / 4+x_{3}(2 \xi+1)\left(\eta^{2}+\eta\right) / 4+x_{4}(2 \xi-1)\left(\eta^{2}+\eta\right) / 4$ $+x_{5}(-\xi)\left(\eta^{2}-\eta\right)+x_{6}(-2 \xi-1)\left(\eta^{2}-1\right) / 2+x_{7}(-\xi)\left(\eta^{2}+\eta\right)+x_{8}(-2 \xi+1)\left(\eta^{2}-1\right) / 2+x_{9}(2 \xi)\left(\eta^{2}-1\right)$
$J(1,2)=y_{1}(2 \xi-1)\left(\eta^{2}-\eta\right) / 4+y_{2}(2 \xi+1)\left(\eta^{2}-\eta\right) / 4+y_{3}(2 \xi+1)\left(\eta^{2}+\eta\right) / 4+y_{4}(2 \xi-1)\left(\eta^{2}+\eta\right) / 4$ $+y_{5}(-\xi)\left(\eta^{2}-\eta\right)+y_{6}(-2 \xi-\xi)\left(\eta^{2}-1\right) / 2+y_{7}(-\xi)\left(\eta^{2}+\eta\right)+y_{8}(-2 \xi+1)\left(\eta^{2}-1\right) / 2+y_{9}(2 \xi)\left(\eta^{2}-1\right)$
$J(2,1)=x_{1}(2 \eta-1)\left(\xi^{2}-\xi\right) / 4+x_{2}(2 \eta-1)\left(\xi^{2}+\xi\right) / 4+x_{3}(2 \eta+1)\left(\xi^{2}+\xi\right) / 4+x_{4}(2 \eta+1)\left(\xi^{2}-\xi\right) / 4$ $+x_{5}(-2 \eta-1)\left(\xi^{2}-1\right) / 2+x_{6}(-\eta)\left(\xi^{2}+\xi\right)+x_{7}(-2 \eta-1)\left(\xi^{2}-1\right) / 2+x_{8}(-\eta)\left(\xi^{2}-\xi\right) / 2+x_{9}(2 \eta)\left(\xi^{2}-1\right)$
$J(2,1)=y_{1}(2 \eta-1)\left(\xi^{2}-\xi\right) / 4+y_{2}(2 \eta-1)\left(\xi^{2}+\xi\right) / 4+y_{3}(2 \eta+1)\left(\xi^{2}+\xi\right) / 4+y_{4}(2 \eta+1)\left(\xi^{2}-\xi\right) / 4$ $+y_{5}(-2 \eta-1)\left(\xi^{2}-1\right) / 2+y_{6}(-\eta)\left(\xi^{2}+\xi\right)+y_{7}(-2 \eta-1)\left(\xi^{2}-1\right) / 2+y_{8}(-\eta)\left(\xi^{2}-\xi\right) / 2+y_{9}(2 \eta)\left(\xi^{2}-1\right)$

Considering the location of each point as:

$$
\begin{gathered}
x_{1}=(0,0), x_{2}=(l, 0), x_{3}=(l, l), x_{4}=(0, l), x_{5}=(l / 2+\alpha l, 0) \\
x_{6}=(l, l / 2), x_{7}=(l / 2, l), x_{8}=(0, l / 2), x_{9}=(l / 2, l / 2)
\end{gathered}
$$

We can see that the x and y coordinates for some of the nodes are the same. Simplifying the jacobian matrix for the coordinates we will have:

$$
\begin{gathered}
J(1,1)=\frac{2 \xi+1}{2} x_{2}+(-\xi)\left(\eta^{2}-\eta\right) x_{5}+\left(\xi \eta^{2}-\xi \eta-2 \xi\right) x_{7} \\
J(1,2)=0
\end{gathered}
$$

$$
\begin{gathered}
J(2,1)=\frac{-\left(\xi^{2}-1\right)(2 \eta+1)}{2} x_{5}+\frac{\left(\xi^{2}-1\right)(2 \eta+1)}{2} x_{7} \\
J(2,2)=\frac{2 \eta-1}{2} y_{3}+2 \eta y_{6}
\end{gathered}
$$

For the determinant of the jacobian at isoparametric coordinates of node 2 to be zero, as we can see because the $J(1,2)$ is zero, for the value to be zero we need to put either $J(1,1)$ or $\mathrm{J}(2,2)$ equal to zero and considering that we want to move node 5 towards node 2 until the determinant is zero we need to find the α in $J(1,1)$ in a way the it is equal to zero.
Considering $c h i=1$, eta $=-1$

$$
\frac{2(1)+1}{2} l+(-(1))\left((-1)^{2}-(-1)\right)(l / 2+l \alpha)+\left((1)(-1)^{2}-(-1)(1)-2(1)\right) l / 2=0
$$

Solving the above equation for α we will find that for $\alpha=-1 / 4, \mathrm{~J}(1,1)=0$ and the determinant of the jacobian will be equal to zero.

