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On “Isoparametric representation”

Assionment 4.1

A 3-node straight bar element 15 defined by 3 nodes: 1, 2 and 3 with axial coordinates x1, x> and
x3 respectively as illustrated in figure below. The element has axial rigidity EA, and length 1 =
X; — X». The axial displacement 1s u(x). The 3 degrees of freedom are the axial node
displacement w1, w2 and us. The 1soparametric definition of the element is
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n which N*(£) are the shape functions of a three bar element. Node 3 lies between 1 and 2 but
1s not necessarily at the nidpoint x = I'2_ For convenience define,

Xy = 0 Xz = I X3 = (%"‘ 1‘1)1! (?2)

where - < o < ¥ characterizes the location of node 3 with respect to the element center. If
o=0 node 3 1s located at the midpomt between 1 and 2.
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Figure.- The three-node bar element in its local system

1. From (7.2) and the second equation of (7.1) get the Jacobian J = dx/d£ in terms of 1. o and £,
Show that,

= gf - Y <o < %thenJ> 0 over the whole element -1 < £ < 1.
» fo =0 JT=121isa constant over the element.

2. Obtain the 1x3 strain displacement matrix B relating e = duw/dx = Bu® where u® 1s the colunn
3-vector of the node displacement u;, 1 and uz. The entries of B are functions of I, o and &,

Hint- B = dN/dx = J1dN/d2 where N =[ N1 N2 N3 ] and J comes from item a).

Solution :
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Consider,-1/4<€ < 1/4. f a=-1/4, £>—-1 and a=1/4 signifies £<1

Therefore-1<¢ <1 for J>0 and -1/4<€<1/4
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On “Structures of revolution™

Assignment 4.2

1. Compute the entries of K® for the following axisymmetric triangle:
r1=20 n=n=a z=z=0. zz=Db

The material is isotropic with v = 0 for which the stress-strain matrix is.

DO = O
O =0 O
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2. Show that the sum of the rows (and columns) 2. 4 and 6 of K* must vanish and explain why.
Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.

3. Compute the consistent force vector f* for gravity forces b =[0, —g]*.

1. As first approximation,

K] = QW/BTEBTdeZ

K] = 27 A[B]" [E)[B]



Centroidal coordinates (,) are

F=(ri+re2+r3)/3=2a/3 Z=(z1+ 2

€ = Ba® = [Bl,BQ, Bg]ae

+23)/3=10/3

8N1/8T’ 0 51 0
[Bl] _ 0 8N1/8z _ 0 ~ Y1
N, /7 0 A+ B+ W;z 0
3N1/3z 8N1/67" Y1 ﬂl
Similarly, we can calculate [Bg]and[Bs)].
a1 =Toz3 — 2379 = ab ag =1321 — 2113 =0 a3 =1129 — 2211 =0
f1 =22 —23=—b B2=23—21=0b B3=21—22=0
yi=r2—1r3=0 Y2 =T3—T1=—a V3=Tr1—T2=a
b1 0 B2 0 B3 0
1B] = e 0 M 0 2 0 3
2|A| %4—514—% 0 %—l—ﬂz-ﬁ-% 0 %%—Bg—F% 0
Y1 B1 Y2 B2 V3 B3
1 r1 z1
|A| = % 1 r2 22 |= %b
1 2 23
—b 0 b 0 0 O
[B] _ 110 0 0 —a 0 a
ab | b/2 0 b/2 0 b/2 0
0 -b/2 —a/2 b/2 a/2 O
502 /4 0 —3b%/4 0 b?/4 0
0 b?/2 ab/2 —b%/2 —ab/2 0
TBT][E] [B] _ i —3v%/4  ab/2  (a%/2) + (5b%/4) —ab/2 (b2/4) — (a?/2) 0
a2b? 0 —b%/2 —ab/2 (a?) + (b%/2) ab/2 —a?
b2/4 —ab/2  (b*/4) — (a®/2) ab/2 (a?/2) + (b*/4) 0
0 0 0 —a? 0 a?
5b% /4 0 —3b%/4 0 b2 /4 0
0 b2 /2 ab/2 —b2/2 —ab/2 0
K] = @ —3v%/4  ab/2  (a%/2) + (5b%/4) —ab/2 (b2/4) — (a?/2) 0
3 0 —b?/2 —ab/2 (a?) + (b%/2) ab/2 —a?
v2/4  —ab/2  (b*/4) — (a?/2) ab/2 (a?/2) + (b*/4) 0
0 0 0 —a? 0 a?

2. Now, adding 1st, 3rd and 5th columns(or rows) produces a non-zero matrix. This signifies sum of
displacement and force vector along radial direction is non-zero. Therefore, there is a non-equilibrium state.

5b% /4 —3b%/4 b2 /4 1

0 ab/2 —ab/2 0

2nE | —3b%/4 21E | a?/2+ 5b%/4 2B | b2 /4 —a?/2| 7E |1
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0 0 0 0

Adding 2nd, 4th and 6th column (or rows) produces a zero matrix. There is a equilibrium in z- direction



and sum of displacements and force vector along z-axis is zero.
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Using first approximation,

fe= QF/NT[b]’I“deZ = 27NT[b)F A = 21
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1/3 0 0 0
0 1/3 —g ~1
1/3 0 0\ 2aab 2ma*b | 0 [  2ma®bg | 0
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