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1 Problem Description

1.1 Assignment 4.1

A 3-node bar element is defined by 3 nodes: 1, 2 and 3 with axial coordinates x1, x2 and x3

respectively, as illustrated in the figure below. The element has axial rigidity EA, and length l =
x1−x2. The axial displacement is u(x). The 3 degrees of freedom are the axial node displacements
u1, u2 and u3. The isoparametric definition of the element is:1

x
u

 =

 1 1 1
x1 x2 x3

u1 u2 u3

N e
1

N e
2

N e
3

 (1)

in which N e
i (ξ) are the shape functions of a 3-node bar element. Node 3 lies between 1 and 2 but

it is not necessarily at the midpoint x = 1/2. For convenience, define:

x1 = 0 x2 = l x3 = (
1

2
+ α)l (2)

where −1
2
< α < 1

2
characterizes the location of node 3 with respect to the element center. If α = 0

node 3 is located at the midpoint between nodes 1 and 2.

Figure 1: 3-node bar element in local system

1. From (2) and the second equation of (1) get the Jacobian J = dx
dξ

in terms of l, α and ξ. Show
that,

• if −1
4
< α < 1

4
, J > 0 over the whole element −1 < ξ < 1.

• if α = 0, J = l/2 is a constant over the element.

2. Obtain the strain displacement matrix B relating e = du
dx

= Bue where ue is the column
3-vector of the node displacement u1, u2 and u3. The entries of B are functions of l, α and ξ.

1.2 Assignment 4.2

1. Compute the entries of Ke for the following axisymmetric triangle:

r1 = 0, r2 = r3 = a, z1 = z2 = 0, z3 = b (3)

The material is isotropic with v = 0 for which the stress-strain matrix is:

C = E


1 0 0 0

1 0 0
1 0

1
2

 (4)
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2. Show that the sum of the rows (and columns) 2, 4 and 6 of Ke must vanish and explain why.
Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.

3. Compute the consistent force vector fe for gravity forces b = [0,−g]T .

2 Solution

2.1 Assignment 4.1

For a 3-node isoparametric bar element, the node coordinates are defined as:

ξ1 = −1 ξ2 = 1 ξ3 = 0 (5)

Therefore, the shape functions take the form:

N1(ξ) =
1

2
ξ(ξ − 1) N2(ξ) =

1

2
ξ(ξ + 1) N3(ξ) = 1− ξ2 (6)

and the corresponding derivatives:

dN1

ξ
= ξ − 1

2

dN2

ξ
= ξ +

1

2

dN3

ξ
= −2ξ (7)

Now, from equation (1) we know that x can be expressed as a function of ξ as:

x =
3∑
i=1

xiNi(ξ) (8)

We may then obtain the Jacobian by deriving x with respect to ξ

J =
dx

dξ
=

3∑
i=1

xi
dNi(ξ)

dξ
(9)

J = l
(1

2
− 2αξ

)
(10)

Knowing the expression for the Jacobian as a function of α, ξ and l, it is possible to analyze how
it is affected for different values of α.

• −1
4
< α < 1

4

It is known that l > 0 and −1 < ξ < 1. Therefore, from equation (10) we may deduce
that for the Jacobian to be positive (J > 0), the following inequality must be fulfilled:

2αξ <
1

2
(11)

In order for this expression to be true for any ξ between -1 and 1, α must be:

|a| < 1

4
→ −1

4
< α <

1

4
(12)
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• α = 0

In this case, node 3 is located exactly at the center of the element and the Jacobian be-
comes a constant:

J =
l

2
(13)

Now we are interested in finding the strain displacement matrix B, which is expressed as:

B =

[
dN1

dx

dN2

dx

dN3

dx

]
= J−1

[
dN1

dξ

dN2

dξ

dN3

dξ

]
(14)

The derivatives of the shape functions are known from equation (7) and the inverted Jacobian takes
the form:

J−1 =
2

l(1− 4αξ)
(15)

Hence, B becomes:

B =
2

l(1− 4αξ)

[(
ξ − 1

2

) (
ξ +

1

2

) (
− 2ξ

)]
(16)

If the nodal displacements ui are known, the strains at any point of the element may then be
computed as:

e =
du

dx
= Bue = J−1

3∑
i=1

ui
dNi

dξ
(17)

e =
2

l(1− 4αξ)

[
u1

(
ξ − 1

2

)
+ u2

(
ξ +

1

2

)
+ u3

(
− 2ξ

)]
(18)

2.2 Assignment 4.2

The axisymmetric triangular structure described by the given coordinates has the following geo-
metrical configuration:

Figure 2: Axisymmetric Structure
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The stiffness matrix of an axisymmetric structure is given by:

K =

∫
Ω

BTCBdΩ = 2π

∫
BTCBrdrdz (19)

B = DN =


∂
∂r

0
0 ∂

∂z
1
r

0
∂
∂z

∂
∂r

[N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
(20)

Applying the following linear shape functions:

N1 = 1− r

a
N2 =

r

a
− z

b
N3 =

z

b
(21)

and their respective derivatives:

∂N1

∂r
= −1

a

∂N2

∂r
=

1

a

∂N3

∂r
= 0 (22)

∂N1

∂z
= 0

∂N2

∂z
= −1

b

∂N3

∂z
=

1

b
(23)

The kinematic matrix B takes the form:

B =


− 1
a

0 1
a

0 0 0
0 0 0 −1

b
0 1

b(
1
r
− 1

a

)
0

(
1
a
− z

rb

)
0 z

rb
0

0 − 1
a

−1
b

1
a

1
b

0

 (24)

However, the stiffness matrix is substantially more complicated to compute than a plane stress
or plane strain matrix since the kinematic matrix B depends on the coordinates. According to
Zienkiewicz (see reference 2), a simple way to compute the integral numerically is to evaluate all
quantities for a centroidal point. Hence, the expression for the stiffness matrix becomes:

K = 2πB
T
CBr∆drdz (25)

Where:

• r and z are the coordinates of the element centroid.

• ∆ = ab
2

is the area of the triangle.

• B is the kinematic matrix evaluated at the centroidal point.

For this particular case, the coordinates of the centroid are:

r =
2

3
a z =

b

3
(26)

Therefore, B takes the form:

B =


− 1
a

0 1
a

0 0 0
0 0 0 −1

b
0 1

b
1
2a

0 1
2a

0 1
2a

0
0 − 1

a
−1
b

1
a

1
b

0

 (27)

Then, applying equation (25) we compute K:
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K =
2π

3
E



5b
4

0 −3b
4

0 b
4

0
b
2

a
2

− b
2

−a
2

0

(a2b)
(

5
4a2

+ 1
2b2

)
−a

2
(a2b)

(
1

4a2
− 1

2b2

)
0

a2b
(

1
2a2

+ 1
b2

)
a
2

−a2
b

(a2b)
(

1
4a2

+ 1
2b2

)
0

Sym a2

b


(28)

It may be observed that the sum of rows or columns 2, 4, and 6 results in a row or column of
zeros because of equilibrium. If degree of freedom 2 is being subjected to a unitary displacement
by applying the force corresponding to K22 on it, degrees of freedom 4 and 6 must be held in place
(restrained) by applying the forces corresponding to K42 and K62 on them, respectively. However,
this is not the case for rows or columns 1, 3 and 5, due to the fact that we are dealing with an
axisymmetric structure and there will be an element radially mirroring the analyzed one on the
other side of the symmetry axis, which will have a stiffness opposing that of this element for radial
degrees of freedom. Therefore, if the complete structure was to be analyzed, the sum of the odd
rows and columns of the global stiffness matrix would go to zero.

Now, for the body forces vector, an approximation like the one used for the computation of the
stiffness matrix may be employed. Assuming that density is constant throughout the domain,
according to Zienkiewicz (see reference 2), the body forces of node i can be approximated as:

f ei = −2π

[
br
bz

]
r∆

3
= −2π

9
a2b

[
0
−g

]
(29)

Assembling the global body forces vector of the element yields:

f e = −2π

9
a2b


0
−g
0
−g
0
−g

 (30)

The numerical integration consists on assuming that the body forces are evenly distributed between
all the nodes of the element, which is generally a good approximation under normal circumstances.
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