Assignment 4.1

3-node straight bar element:

Figure.- The three-node bar element in its local system

The isoparametric definition of the element is

$$
\left[\begin{array}{l}
1 \\
x \\
u
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{l}
N_{1}^{e} \\
N_{2}^{e} \\
N_{3}^{e}
\end{array}\right]
$$

In which N^{e} are the shape functions of the element, with 3 degrees of freedom.
The coordinates of the nodes are displayed as follows

$$
x_{1}=0 \quad x_{2}=l \quad x_{3}=\left(\frac{1}{2}+\alpha\right) l
$$

Where $-\frac{1}{2}<\alpha<\frac{1}{2}$ characterizes the location of the node 3 with respect to the element canter.

1. Computation of the Jacobian matrix

The shape functions of the nodes are expressed in a quadratic form as follows

$$
\begin{gathered}
N_{1}^{e}=\frac{-\xi}{2}(1-\xi) \\
N_{2}^{e}=\frac{\xi}{2}(\xi+1) \\
N_{3}^{e}=(1-\xi)(1+\xi)
\end{gathered}
$$

Since this is a 1D problem the Jacobian matrix is a scalar and can be computed by the following expression

$$
\mathrm{J}=\frac{d x}{d \xi}=x_{1} \frac{d N_{1}^{e}}{d \xi}+x_{2} \frac{d N_{2}^{e}}{d \xi}+x_{3} \frac{d N_{3}^{e}}{d \xi}
$$

Plugging in the previous shape functions and deriving respect to the natural coordinate the Jacobian results as

$$
J=l\left(\xi+\frac{1}{2}\right)+\left(\frac{l}{2}+\alpha l\right)(-2 \xi)=-2 \alpha l \xi+\frac{l}{2}
$$

Forcing that $J>0$

$$
\alpha \xi=\frac{1}{4}
$$

For $\xi=-1 \& \xi=1$, the corresponding bounds of the parameter α are

$$
\alpha=-\frac{1}{4} \& \alpha=\frac{1}{4}
$$

Therefore,
If $-\frac{1}{4}<\alpha<\frac{1}{4}$ then $\mathrm{J}>0$ over the whole element
And if $\alpha=0$ then $J=\frac{1}{2}$ is a constant over the element.

2. Computation of strain-displacement matrix B

The expression that describes the strain-displacement matrix is the following

$$
\boldsymbol{B}=\frac{d \boldsymbol{N}}{d x}=J^{-} 1 \frac{d \boldsymbol{N}}{d \xi}
$$

Where $\mathrm{N}=\left[\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}\right]$

Plugging in the previous shape functions, deriving the expressions and inverting the Jacobian the B matrix results as follows

$$
\begin{gathered}
J^{-1}=\frac{1}{l\left(\frac{1}{2}-2 \alpha \xi\right)} \\
\frac{\mathrm{dN}}{\mathrm{~d} \xi}=\left[\begin{array}{lll}
\xi-\frac{1}{2} & \xi+\frac{1}{2} & -2 \xi
\end{array}\right]
\end{gathered}
$$

$$
\boldsymbol{B}=\frac{1}{l\left(\frac{1}{2}-2 \alpha \xi\right)}\left[\begin{array}{lll}
\xi-\frac{1}{2} & \xi+\frac{1}{2} & -2 \xi
\end{array}\right]
$$

Assignment 4.2

Axisymmetric triangle

$$
r_{1}=0 \quad r_{2}=r_{3}=a, \quad z_{1}=z_{2}=0 \quad z_{3}=b
$$

Material data:

- Isotropic
- $v=0$
- Stress-strain matrix:

$$
\boldsymbol{E}=E\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

1. Computation of K^{e}

The following expression describes the stiffness matrix

$$
\boldsymbol{K}^{e}=\int_{V^{e}} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{E} \boldsymbol{B r} d r d \theta d z=2 \pi \int_{S^{e}} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{E} \boldsymbol{B r} d r d z
$$

In order to compute the strain-displacement matrix the shape functions must be previously defined

$$
\left\{\begin{array}{c}
N_{1}=1-\frac{r}{a} \\
N_{2}=\frac{r}{a}-\frac{z}{b} \\
N_{3}=\frac{z}{b}
\end{array}\right.
$$

Then, the B matrix is calculated as

$$
D=\left[\begin{array}{cc}
\frac{\partial}{\partial r} & 0 \\
0 & \frac{\partial}{\partial z} \\
\frac{1}{r} & 0 \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial r}
\end{array}\right]
$$

$B=D N=\left[\begin{array}{cccccc}-1 / a & 0 & 1 / a & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 / b & 0 & 1 / b \\ 1 / r-1 / a & 0 & 1 / a-z /(b r) & 0 & z /(b r) & 0 \\ 0 & -1 / a & -1 / b & 1 / a & 1 / b & 0\end{array}\right]$
The integration limits are defined as follows

$$
\boldsymbol{K}^{e}=2 \pi \int_{0}^{a} \int_{0}^{b / a r} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{E} \boldsymbol{B} r d z d r
$$

Using the symbolic toolbox of Matlab to solve the integral of the expression the stiffness matrix results as

$$
\boldsymbol{K}^{e}=\frac{2 \pi a^{2} b}{3} E\left[\begin{array}{cccccc}
\frac{2 b}{3} & 0 & \frac{-b}{4} & 0 & \frac{b}{12} & 0 \\
0 & \frac{b}{6} & \frac{a}{6} & \frac{-b}{6} & \frac{-a}{6} & 0 \\
\frac{-b}{4} & \frac{a}{6} & \frac{a^{2}}{6 b}+\frac{4 b}{9} & \frac{-a}{6} & \frac{-a^{2}}{6 b}+\frac{b}{18} & 0 \\
0 & \frac{-b}{6} & \frac{-a}{6} & \frac{a^{2}}{3 b}+\frac{b}{6} & \frac{a}{6} & \frac{-a^{2}}{3 b} \\
\frac{b}{12} & \frac{-a}{6} & \frac{-a^{2}}{6 b}+\frac{b}{18} & \frac{a}{6} & \frac{a^{2}}{6 b}+\frac{b}{9} & 0 \\
0 & 0 & 0 & \frac{-a^{2}}{3 b} & 0 & \frac{a^{2}}{3 b}
\end{array}\right]
$$

2. Sum of rows and columns $(2,4,6) \&(1,3,5)$

The sum of rows and columns $(2,4,6)$ vanish because this axisymmetric model can withstand motion in z-direction (axis of symmetry) without generating stress with a rigid-body behaviour. However, the sum of rows and columns $(1,3,5)$ that represents the r-direction are not null and shows that an axisymmetric model as the one analysed here cannot withstand non-symmetric movements as those in r-direction without generating stress.

3. Computation of the consistent force vector f^{e} for $b=[0,-g]$

The expression used to calculate the force vector is

$$
\begin{gathered}
\boldsymbol{f}^{e}=2 \pi \int_{S^{e}} \boldsymbol{N}^{T} \boldsymbol{b} r d r d z \\
\boldsymbol{f}^{e}=2 \pi \int_{0}^{a} \int_{0}^{b / a r}\left[\begin{array}{cc}
1-\frac{r}{a} & 0 \\
0 & 1-\frac{r}{a} \\
\frac{r}{a}-\frac{z}{b} & 0 \\
0 & \frac{r}{a}-\frac{z}{b} \\
\frac{z}{b} & 0 \\
0 & \frac{z}{b}
\end{array}\right]\left[\begin{array}{c}
0 \\
-g
\end{array}\right] r d z d r=-\pi g a^{2} b\left[\begin{array}{c}
0 \\
1 / 12 \\
0 \\
3 / 8 \\
0 \\
1 / 8
\end{array}\right]
\end{gathered}
$$

