Computational Structural Mechanics and Dynamics

"Structures of revolution"

Assignment 4.1

1. Compute the entries of \mathbf{K}^{e} for the following axisymmetric triangle:

$$
r_{1}=0, \quad r_{2}=r_{3}=a, \quad z_{1}=z_{2}=0, \quad z_{3}=b
$$

The material is isotropic with $v=0$ for which the stress-strain matrix is,

$$
\boldsymbol{E}=E\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

2. Show that the sum of the rows (and columns) 2, 4 and 6 of \mathbf{K}^{e} must vanish and explain why. Show as well that the sum of rows (and columns) 1,3 and 5 does not vanish, and explain why.
3. Compute the consistent force vector \mathbf{f}^{e} for gravity forces $\mathbf{b}=[0,-\mathrm{g}]^{\mathrm{T}}$.

Date of Assignment: 26 / 02 / 2018
Date of Submission: $5 / 03 / 2018$
The assignment must be submitted as a pdf file named As4-Surname.pdf to the CIMNE virtual center.

CSMD: Assignment 4

Juan Pedro Roldán

March 2018

1 Triangle of revolution

1.1 Compute stiffness matrix

For this triangle we will consider an isoparametric interpolation $(r, z) \rightarrow(\xi, \eta)$ with shapefunctions N_{i} :

$$
\begin{equation*}
N_{1}=\xi ; N_{2}=1-\xi-\eta ; N_{3}=\eta \tag{1}
\end{equation*}
$$

With respect to the global variables (r, z), we can see that in order to maintain the interpolation so that $r(\xi, \eta)=\sum_{i}^{3} N_{i} r_{i}$, the values of the shapefunctions N_{i} must be:

$$
\begin{equation*}
N_{1}=\frac{a-r}{a} ; \quad N_{2}=\frac{r}{a}-\frac{z}{b} ; \quad N_{3}=\frac{z}{b} \tag{2}
\end{equation*}
$$

And then, the interpolation of the radius (with $r_{1}=0, r_{2}=r_{3}=a$) becomes

$$
\begin{equation*}
r=r_{1} N_{1}+r_{2} N_{2}+r_{3} N_{3}=a(1-\xi-\eta)+a \eta=a(1-\xi) \tag{3}
\end{equation*}
$$

The derivatives of the shape-functions with respect to (r, z) are not dependent on any variable, only the geometry:

$$
\begin{align*}
& \frac{\partial N_{1}}{\partial r}=-\frac{1}{a} ; \quad \frac{\partial N_{1}}{\partial z}=0 \\
& \frac{\partial N_{2}}{\partial r}=\frac{1}{a} ; \quad \frac{\partial N_{2}}{\partial z}=-\frac{1}{b} \tag{4}\\
& \frac{\partial N_{3}}{\partial r}=0 ; \quad \frac{\partial N_{3}}{\partial z}=\frac{1}{b}
\end{align*}
$$

And the relation between N_{i} and r:

$$
\begin{equation*}
\frac{N_{1}}{r}=\frac{\xi}{a(1-\xi)} ; \frac{N_{2}}{r}=\frac{1-\xi-\eta}{a(1-\xi)} ; \frac{N_{3}}{r}=\frac{\eta}{a(1-\xi)} \tag{5}
\end{equation*}
$$

With all this expressions, we can already start building the stiffness matrix. The general expression for a revolution structure stiffness matrix calculated using the centroid rule (1 point Gauss quadrature) for the integral is:

$$
\begin{equation*}
\mathbf{K}^{e}=2 \pi w_{k} \mathbf{B}^{T}\left(\xi_{k}, \eta_{k}\right) \mathbf{E B}\left(\xi_{k}, \eta_{k}\right) r\left(\xi_{l}, \eta_{k}\right) J\left(\xi_{k} \eta_{k}\right) \tag{6}
\end{equation*}
$$

In this case, the integration point is the centroid of the triangle $P_{k}=\left(\frac{1}{3}, \frac{1}{3}\right)$, with $w_{k}=0.5$. The Jacobian of linear triangle transformation is twice the area of such triangle, so in this case we have that $J=2 A=a b$. The radius $r\left(\xi_{k}, \eta_{k}\right)$ at this point is, using (2), $r=\frac{2}{3} a . \mathbf{B}$ and \mathbf{E} matrices are (after including the expressions in (4) and (5)):

$$
\begin{aligned}
\mathbf{B} & =\left[\begin{array}{cccccc}
\frac{\partial N_{1}}{\partial r} & \frac{\partial N_{2}}{\partial r} & \frac{\partial N_{3}}{\partial r} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\partial N_{1}}{\partial z} & \frac{\partial N_{2}}{\partial z} & \frac{\partial N_{3}}{\partial z} \\
\frac{N_{1}}{r} & \frac{N_{2}}{r} & \frac{N_{3}}{r} & 0 & 0 & 0 \\
\frac{\partial N_{1}}{\partial z} & \frac{\partial N_{2}}{\partial z} & \frac{\partial N_{3}}{\partial z} & \frac{\partial N_{1}}{\partial r} & \frac{\partial N_{2}}{\partial r} & \frac{\partial N_{3}}{\partial r}
\end{array}\right]= \\
& =\left[\begin{array}{cccccc}
\frac{-1}{a} & \frac{1}{a} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{-1}{b} & \frac{1}{b} \\
\frac{\xi}{a(1-\xi)} & \frac{1-\xi-\eta}{a(1-\xi)} & \frac{\eta}{a(1-\xi)} & 0 & 0 & 0 \\
0 & \frac{-1}{b} & \frac{1}{b} & \frac{-1}{a} & \frac{1}{a} & 0
\end{array}\right] ; \\
\mathbf{E} & =E\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Particularizing for $P_{k}=\left(\frac{1}{3}, \frac{1}{3}\right), \mathbf{B}^{\mathrm{T}} \mathbf{E B}$ becomes:

And $\mathbf{K}^{\text {e }}$:

$$
\mathbf{K}^{e}=2 \pi \frac{1}{3} a^{2} b E\left[\begin{array}{cccccc}
\frac{5}{4 a^{2}} & \frac{-3}{4 a^{2}} & \frac{1}{4 a^{2}} & 0 & 0 & 0 \\
& \frac{-3}{4 a^{2}}+\frac{1}{2 b^{2}} & \frac{1}{4 a^{2}}+\frac{-1}{2 b^{2}} & \frac{1}{2 b a} & \frac{-1}{2 b a} & 0 \\
& & \frac{1}{4 a^{2}}+\frac{1}{2 b^{2}} & \frac{-1}{2 b a} & \frac{1}{2 b a} & 0 \\
& & & \text { symm } & \frac{1}{2 a^{2}} & \frac{1}{2 a^{2}} \\
& & & & \frac{1}{b^{2}}+\frac{1}{2 a^{2}} & \frac{-1}{b^{2}} \\
& & & & & \frac{1}{b^{2}}
\end{array}\right]
$$

1.2 Stiffness matrix analysis

We can see that the sum of rows (or columns) 4,5 and 6 gives 0 . These rows are related to the motion in Z direction. As we are dealing with revolution structures, the same movement in the Z direction would be just a vertical translation, and then, rigid body motion. If we look at rows 1,2 and 3 (rows linked to radial direction), this is not the case. The same motion in the radial direction would mean a deformation of the element (expansion if positive, shrinkage if negative), and thus, the relative rows of the stiffness matrix are non-zero.

1.3 Force vector for gravity forces

Following the same reasoning that was done for the stiffness matrix, the expression of the force vector is (integration done by centroid rule):

$$
\begin{equation*}
\mathbf{f}^{e}=2 \pi w_{k} \mathbf{N}^{T}\left(\xi_{k}, \eta_{k}\right) \mathbf{b}\left(\xi_{k}, \eta_{k}\right) r\left(\xi_{k}, \eta_{k}\right) J\left(\xi_{k}, \eta_{k}\right) \tag{8}
\end{equation*}
$$

Matrix \mathbf{N} of shape functions is (already particularized for centroid P_{k}, and with the same weight $w_{k}=0.5$)

$$
\mathbf{N}=\left[\begin{array}{cccccc}
N_{1} & N_{2} & N_{3} & 0 & 0 & 0 \tag{9}\\
0 & 0 & 0 & N_{1} & N_{2} & N_{3}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

The force vector is

$$
\mathbf{f}^{e}=2 \pi \frac{-1}{9} a^{2} b g\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

