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1 Axis-symmetric Triangle
A structure is stated to be axis-symmetric and can be obtained by the revolution of

the triangle shown on Figure 1.1. The coordinates system used is the cylindrical, being
θ the axis normal to the triangle.

Figure 1.1: Problem geometry

1.1 Stiffness Matrix
In order to find the relation between forces and displacements Ku = f or, in other

words, to find the stiffness matrix K, we must select the relevant strain-displacement
relations. Since the problem is axis-symmetric, there can be no variable variation on the
θ direction. Thus, the strain tensor can be written as in Equation 1.1.

ε =

εrr εrz 0
εrz εzz 0
0 0 εθθ

 ⇒ ε =


εrr
εzz
εθθ
2εrz

 =


∂/∂r 0
0 ∂/∂z
1/r 0
∂/∂z ∂/∂r

[
ur

uz

]
= Du (1.1)

From the strain definition, the stress can be obtained through the constitutive matrix
by σ = Eε. Where the constitutive matrix for the given problem (isotropic and with
ν = 0) is:
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E = E


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/2

 (1.2)

Using the isoparametric formulation to define the geometry and interpolate the dis-
placements we obtain (since we’re dealing with a one-element domain, the upper script
(e) was suppressed):


1
r
z
ur

uz

 =


1 1 1
r1 r2 r3
z1 z2 z3
ur1 ur2 ur3

uz1 uz2 uz3


N1

N2

N3

 =


1 1 1
0 a a
0 0 b
ur1 ur2 ur3

uz1 uz2 uz3


 ξ

η
1− ξ − η

 (1.3)

where ξ and η are the natural coordinates.
The strain is now defined in terms of the displacements and the shape function. Conse-

quently we must evaluate the shape functions and their derivatives on every nodal point
in terms of r and z. However, the shape functions are given on natural coordinates,
needing, thus, a coordinate transformation.

N1

N2

N3

 =

1 1 1
0 a a
0 0 b

−1 1r
z

 and
[
∂Ni/∂r
∂Ni/∂z

]
= J−1

[
∂Ni/∂ξ
∂Ni/∂η

]
(1.4)

The matrix J is the Jacobian, that for the given problem is defined by:

J =

[
∂r/∂ξ ∂z/∂ξ
∂r/∂η ∂z/∂η

]
=

[
−a −b
0 −b

]
(1.5)

The derivatives of the shape functions in respect to the natural coordinate can be
calculated from their definitions stated in Equation 1.3:

[
∂N1/∂ξ
∂N1/∂η

]
=

[
1
0

] [
∂N2/∂ξ
∂N2/∂η

]
=

[
0
1

] [
∂N3/∂ξ
∂N3/∂η

]
=

[
−1
−1

]
(1.6)

Additionally, we can define the vector N as:

N =

[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
(1.7)
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The definitions stated in equations 1.3 to 1.7 allow us to obtain the shape functions
in terms of global coordinates r and z, as well as to calculate the B = DN matrix,
yielding:

N1 = 1− r

a
N2 =

r

a
− z

b
N3 =

z

b
(1.8)

B =


−1/a 0 1/a 0 0 0
0 0 0 −1/b 0 1/b

1/r − 1/a 0 1/a − z/rb 0 z/rb 0
0 −1/a −1/b 1/a 1/b 0

 (1.9)

Finally, the stiffness matrix can be obtained by the relation in Equation 1.10. The
axis-symmetry of the problem allows the volume integral of a 3D element to be reduced
to an area integral (on r and z directions) multiplied by the circumference.

K = 2π

∫
Ω

rBTEBdA = 2π
1

2

∫ 1

−1

∫ 1

−1

rBTEBdetJdξdη (1.10)

To integrate the stiffness matrix we resort to the one-point Gauss integration, in which
the evaluated function must be integrated on the middle (zero) of the natural domain,
being the centroid of the triangular element for the given problem (r = 2a/3 and z = b/3).
Numerically integrating the stiffness matrix at the centroid also avoids the numerical
issues with the 1/r terms present on the B matrix when r = 0 at point 1.

The final relation is then given by (suppressing the 2π term, for it cancels out with
the same term on the r.h.s of Ku = f):

K =
1

2

p∑
k=1

p∑
l=1

wkwlrk,lB
T
k,lEBk,ldetJk,l (1.11)

where p = 1 and the weights wk and wl for the one-point Gauss integration are both
equal to 1. The stiffness matrix for the axis-symmetric triangular element is, thus:

K = E



5b/12 0 − b/4 0 b/12 0
0 b/6 a/6 − b/6 − a/6 0

− b/4 a/6 5b/12 + a2/6b − a/6 b/12 − a2/6b 0
0 − b/6 − a/6 b/6 + a2/3b a/6 −a2/3b

b/12 − a/6 b/12 − a2/6b a/6 b/12 + a2/6b 0
0 0 0 − a2/3b 0 a2/3b

 (1.12)

1.2 Rigid body motion
The sum of the rows 2, 4 and 6 of the stiffness matrix (Equation 1.15) are equal to

zero. This is due to the possibility, within this model, for the element to have a rigid
body motion in the z-direction.
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The equations of the linear system Ku = f formed by rows 2, 4 and 6 are related to
the displacements in the z-direction of every node. If the element is under a rigid body
motion with no external forces on the z-direction, the displacement values in rows 2, 4
and 6 will all have the same value and f = 0, thus for the linear system to hold the
coefficients in the stiffness matrix must cancel out, as they do on the given case.

On the other hand, a rigid body motion in the r-direction is not possible within this
model due to the symmetry hypothesis. The symmetry would be lost in respect to the
chosen axis if there were any rigid body motion, consequently the linear system doesn’t
support such inputs. This is also verified by the fact that the sum of rows 1, 3 and 5 of
the stiffness matrix don’t cancel out.

1.3 Force vector
Given that the body is under gravitational forces given by

b =

[
0
−g

]
(1.13)

Similarly to the stiffness matrix, the consistent force vector can also be calculated via
Gauss integration, as presented in Equation 1.14.

f =
1

2

p∑
k=1

p∑
l=1

wkwlN
T
k,lbrk,ldetJk,l (1.14)

Yielding for the given problem:

f =


0

− a2bg/9
0

− a2bg/9
0

− a2bg/9

 (1.15)
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2 Isoparametric representation
In order to find the appropriate shape functions for the quadrilateral element shown

on Figure 2.1, the line-product method is initially applied for the N5 shape function,
also depicted on the Figure 2.1.

Figure 2.1: Five-node quadrilateral element

Following the aforementioned method, N5(ξ, η) has the form:

N5(ξ, η) = c5L1−2L2−3L3−4L4−1 (2.1)
The equation L1−2 for the side 1-2 is η + 1 = 0, for the side 2-3 is ξ − 1 = 0, for the

side 3-4 is η − 1 = 0 and for the side 4-1 is ξ + 1 = 0. Substituting on Equation 2.1
yields:

N5(ξ, η) = c5(η + 1)(ξ − 1)(η − 1)(ξ − 1) (2.2)
Equation 2.2 takes the value zero over all nodes from 1 to 4. For the shape function

to have a value of one at the node 5, the equation should be normalized:

N5(0, 0) = c5(0 + 1)(0− 1)(0− 1)(0− 1) (2.3)
Thus, c5 must take the value of 1, yielding a final expression for N5:

N5(ξ, η) = (η − 1)2(ξ − 1)2 (2.4)
Following the hint given on the problem description, we know that the remaining

shape functions will take the form shown on Equation 2.5.

Ni = N∗
i + αN5 for i = 1, 2, 3, 4 (2.5)

where N∗
i are the shape functions of the 4-noded quadrilateral and α is responsible for

making Ni = 0 on node 5.

6



Applying formula 2.5 for every i yields:

N1 =
1

4
(1− ξ)(1− η) + α(1− ξ2)(1− η2) (2.6)

N2 =
1

4
(1 + ξ)(1− η) + α(1− ξ2)(1− η2) (2.7)

N3 =
1

4
(1 + ξ)(1 + η) + α(1− ξ2)(1− η2) (2.8)

N4 =
1

4
(1− ξ)(1 + η) + α(1− ξ2)(1− η2) (2.9)

But we know that on node 5 N1 = N2 = N3 = N4 = 0 and that ξ = η = 0, yielding
an alpha (for all cases) of:

0 =
1

4
+ α ⇒ α = −1

4
(2.10)

Thus, the remaining shape functions take the form:

N1 =
1

4
(1− ξ)(1− η)− 1

4
(1− ξ2)(1− η2) = −1

4
(1− ξ)(1− η)(ξ + η + ξη) (2.11)

N2 =
1

4
(1 + ξ)(1− η)− 1

4
(1− ξ2)(1− η2) =

1

4
(1 + ξ)(1− η)(ξ − η + ξη) (2.12)

N3 =
1

4
(1 + ξ)(1 + η)− 1

4
(1− ξ2)(1− η2) =

1

4
(1 + ξ)(1 + η)(ξ + η − ξη) (2.13)

N4 =
1

4
(1− ξ)(1 + η)− 1

4
(1− ξ2)(1− η2) =

1

4
(1− ξ)(1 + η)(−ξ + η + ξη) (2.14)

2.1 Compatibility
Compatibility can be verified by evaluating the degree of the polynomial used to

interpolate between nodes. A side with two nodes, such as 1-2 for example, must yield
a linear interpolation. Evaluating the shape function N1 At side 1-2, where η = −1 we
obtain:

N1 = −1

4
(1− ξ)(1 + 1)(ξ − 1− ξ) =

1

2
(1− ξ) (2.15)

As expected, the interpolating function of side 1-2 is linear. Similarly, linear interpo-
lations can be found for all sides of the quadrilateral, verifying compatibility.
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2.2 Unity sum
The unity sum of shape functions can be verified by remembering the general form

given on Equation 2.5. The sum of all shape functions yields:

5∑
i=1

Ni =
4∑

i=1

N∗
i + 4αN5 +N5 =

4∑
i=1

N∗
i + 4(−1

4
)N5 +N5 =

4∑
i=1

N∗
i (2.16)

But the N∗
i shape functions are from the 4-noded quadrilateral element, whose sum

has already been proven to be equal to 1. Consequently, from the result on the r.h.s
of Equation 2.16, the unity sum for the 5-noded quadrilateral element is automatically
verified.
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