Computational Structural Mechanics and Dynamics

Assignment 4 - Trond Jorgen Opheim

1. Compute the entries of K for the axisymmetric triangle

To compute the stiffness matrix for the element given in Figure 1, I use the properties from polar coordinates, which gives me the following expression

$$
\begin{gathered}
K=\int_{V} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{E} \boldsymbol{B} d v \\
K=\int_{0}^{2 \pi} \int_{A} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{E} \boldsymbol{B} d A d \theta \\
K=2 \pi \int_{A} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{E} \boldsymbol{B} d A
\end{gathered}
$$

To find the B-matrix I start by finding the shape functions, and then using the following properties

$$
\begin{aligned}
& B=\frac{1}{2 A}\left[\begin{array}{cccccc}
\beta_{1} & 0 & \beta_{2} & 0 & \beta_{3} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{2} & 0 & \gamma_{3} \\
\frac{\alpha_{1}}{r}+\beta_{1}+\frac{\gamma_{1} z}{r} & 0 & \frac{\alpha_{2}}{r}+\beta_{2}+\frac{\gamma_{2} z}{r} & 0 & \frac{\alpha_{3}}{r}+\beta_{3}+\frac{\gamma_{3} Z}{r} & 0 \\
\gamma_{1} & \beta_{2} & \gamma_{2} & \beta_{3} & \gamma_{3} & \beta_{4}
\end{array}\right] \\
& u=\frac{1}{2 A}\left[\begin{array}{llll}
1 & r & z
\end{array}\right]\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
\end{aligned}
$$

Shape functions N_{1}, N_{2}, N_{3}

$$
\begin{gathered}
u(r, z)=N_{1} u_{1}+N_{2} u_{2}+N_{3} U_{3} \\
u(r, z)=C_{1}+C_{2} r+C_{3} z \\
u(0,0)=u_{1} \quad u(a, 0)=u_{2} \quad u(a, b)=u_{3} \\
u(r, z)=\left(1-\frac{r}{a}\right) u_{1}+\left(\frac{r}{a}-\frac{z}{b}\right) u_{2}+\left(\frac{z}{b}\right) u_{3} \\
u(r, z)=\frac{1}{a b}\left[\begin{array}{lll}
1 & r & z
\end{array}\right]\left[\begin{array}{ccc}
a b & 0 & 0 \\
-b & b & 0 \\
0 & -a & a
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
\end{gathered}
$$

By transforming this equation into a matrix equation on the form as (1.1), I obtain the values for α, β, γ and the B-matrix for the triangular element becomes the following

$$
B=\frac{1}{a b}\left[\begin{array}{cccccc}
-b & 0 & b & 0 & 0 & 0 \\
0 & 0 & 0 & -a & 0 & a \\
\frac{a b}{r}-b & 0 & b-\frac{a z}{r} & 0 & \frac{a z}{r} & 0 \\
0 & -b & -a & b & a & 0
\end{array}\right]
$$

Calculation of K
Since the integrand is dependent of both the variables in the integral, the whole equation gets very complicated. To calculate the stiffness matrix I therefore use an approximation given by

$$
K=2 \pi \bar{r} \overline{\boldsymbol{B}}^{\boldsymbol{T}} \boldsymbol{E} \overline{\boldsymbol{B}}
$$

$$
\bar{r}=\frac{r_{1}+r_{2}+r_{3}}{3} \quad \bar{z}=\frac{z_{1}+z_{2}+z_{3}}{3} \quad \overline{\boldsymbol{B}}=\boldsymbol{B}(\bar{r}, \bar{z})
$$

By inserting $r=\bar{r}$ and $z=\bar{z}$, and doing the calculations in Matlab I get the following stiffness matrix

$$
K=E \pi\left[\begin{array}{cccccc}
\frac{b}{6} & 0 & -\frac{b}{2} & 0 & \frac{b}{6} & 0 \\
0 & \frac{b}{3} & \frac{a}{3} & -\frac{b}{3} & -\frac{a}{3} & 0 \\
-\frac{b}{2} & \frac{a}{3} & \frac{a^{2}}{3 b}+\frac{5 b}{6} & -\frac{a}{3} & -\frac{a^{2}}{3 b}+\frac{b}{6} & 0 \\
0 & -\frac{b}{3} & -\frac{a}{3} & \frac{2 a^{2}}{3 b}+\frac{b}{3} & \frac{a}{3} & -\frac{2 a^{2}}{3 b} \\
\frac{b}{6} & -\frac{a}{3} & -\frac{a^{2}}{3 b}+\frac{b}{6} & \frac{a}{3} & \frac{a^{2}}{3 b}+\frac{b}{6} & 0 \\
0 & 0 & 0 & -\frac{2 a^{2}}{3 b} & 0 & \frac{2 a^{2}}{3 b}
\end{array}\right]
$$

2. Sum of rows and columns

As one can see from the stiffness matrix, if one sums up the entries in row or column 2, 4 and 6 , the sum is equal to zero. This situation describes a rigid body motion of the solid figure, which the solid figure has no stiffness or forces to prevent. The basic formulation in finite element is $K * r=f$, and if $r=1$ and there are no external forces acting on it, the sum of forces have to be equal zero which is handled by the summation of entries in K .

For the case row and column 1, 3 and 5 we are looking at the situation where the solid is expanding in the r-direction. Since the solid figure in this situation obviously is being stretched, the solid figure has a stiffness to prevent this displacement.

3. Consistent force vector

The consistent force vector is given by equation (3.1). By using the same approximation as in problem 1 and with the computed shape functions, I get the following results

$$
\begin{gathered}
f=2 \pi \int_{A}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1}
\end{array}\right]\left[\begin{array}{c}
0 \\
-g
\end{array}\right] \bar{r} d r d z \\
N_{1}=1-\frac{\bar{r}}{a} \quad N_{2}=\frac{\bar{r}}{a}-\frac{\bar{z}}{b} \quad N_{3}=\frac{\bar{z}}{b} \\
f_{i}=\frac{2 \pi}{3} A \bar{r}\left[\begin{array}{c}
0 \\
-g
\end{array}\right] \\
f=-\frac{2 \pi a^{2} b}{9}\left[\begin{array}{l}
0 \\
g \\
0 \\
g \\
0 \\
g
\end{array}\right]
\end{gathered}
$$

