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ASSIGNMENT 4.1

1. Compute the entries of Ke for the following axisymmetric triangle:

r1 = 0, r2 = r3 = a, z1 = z2 = 0, z3 = b

The material is isotropic with ν= 0 for which stress-strain matrix is,

E


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/2

 (0.1)

Solution 1:

Figure 0.1: Discretization of one axisymmetric triangle

The element stiffness matrix of an axisymmetric linear triangular element is defined as:

Ke = 2π
∫

A
r BT EBd A (0.2)

In which it should be noticed that the term 2π can be neglected when it is time to solve the
system of equations, due to the same term that multiplies the force vector. But as a reminder
that the expression 0.2 is a solid of revolution of 360º respect to a central axis, the term will be
taken as constant. Then, E is defined as in the equation 0.1, and Bi is defined as the partial
derivatives of the shape function respect to each coordinate:

2



Bi = 1

2A(e)



∂Ni
∂r 0

0 ∂Ni
∂z

Ni
r 0

∂Ni
∂z

∂Ni
∂r

 (0.3)

The shape functions of the axisymmetric triangle are defined as:

Ni = 1

2A(e)
(ai +bi r + ci z) (0.4)

where:

ai = r j zk − rk z j

bi = z j − zk

ci = rk − r j

Now, in order to calculate each shape function and the components of the matrix Bi the table
0.1 is considered, then:

Nodes r z ai bi ci

1 0 0 ab -b 0
2 a 0 0 b -a
3 a b 0 0 a

Table 0.1: Components needed to calculate the shape functions and its derivatives.

N1 = 1

2A
(ab −br ) = 1− r

a

N2 = 1

2A
(br −az) = r

a
− z

b

N3 = 1

2A
(az) = z

b

Where the area of the triangle is A = ab
2 . Therefore, the matrix B is:

Bi =


− 1

a 0 1
a 0 0 0

0 0 0 − 1
b 0 1

b

a−r
ar 0 br−az

abr 0 z
br 0

0 − 1
a − 1

b
1
a

1
b 0

 (0.5)
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Substituting in the stiffness matrix of the axisymmetric triangle and performing the corre-
sponding matrix multiplications:

Ke =
∫

A
2πE



− 2
a + 2r

a2 + 1
r 0 z

ab + 1
a − 2r

a2 − z
br

0 r
22

r
2ab

z
ab + 1

a − 2r
a2 − z

br
r

2ab
−2z
ab + 2r

a2 + r
2b2 + z2

r b2

0 − r
2a2 − r

2ab
z

br − z
ab − r

2ab
z

ab − r
2b2 − z2

r b2

0 0 0

...

...

0 z
br − z

ab 0
− r

2a2 − r
2ab 0

− r
2ab

z
ab − r

2b2 − z2

r b2 0
r

2a2 + r
b2

r
2ab − r

b2

r
2ab

r
2b2 + z2

r b2 0
− r

b2 0 r
b2


d A

In order to integrate the above stiffness matrix, the proposed procedure is by integrating nu-
merically by using Gauss quadratures, first it it needed to transform the area integral into two
integrals with normalized limits, in that sense the first calculation required is the Jacobian
matrix, which come out by considering the following coordinates transformation:N1

N2

N3

=
 ξ

η

1−ξ−η

 (0.6)

The linear approximation considered as:

r = N1r1 +N2r2 +N3r3

z = N1z1 +N2z2 +N3z3 (0.7)

And is transformed with the natural coordinates as:

r = (r1 − r3)ξ+ (r2 − r3)η+ r3

z = (z1 − z3)ξ+ (z2 − z3)η+ z3 (0.8)

Performing the derivation of the shape functions Ni with respect to the natural coordenates
ξ and η: ∂Ni

∂ξ

∂Ni
∂η

=
 ∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

∂Ni
∂r

∂Ni
∂z

 (0.9)

4



Where the Jacobian is:  ∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

=
[−a −b

0 −b

]
(0.10)

And its determinant is equal to det (J) = ab. Then, by using the expressions explained above,
the Jacobian can be related as the parameter of changing the system of coordinates from
cartesian to natural as dr d z = det (J)dξdη. The weights (that will be considered as one in the
numerical integration) are multiplied by 1/2 so that the element area is correctly computed
in those cases.

dΩ= d xd y = det (J)dξdη→ Ke = 2π
∫

A
r BT EB

det (J)

2
dξdη (0.11)

The general approximate solution can be obtained as:

2π
∫

A
r BT EB

det (J)

2
dξdη≈ 2π

p1∑
i=1

p2∑
j=1

wi w j r BT (ξi ,η j )EB(ξi ,η j )
det (J)

2
(0.12)

The Gauss Quadrature chosen is one point of integration located in the centroid (r = 2a/3
and z = b/3) of the triangular element and both weights are equal to 1. Integrating numeri-
cally, the stiffness matrix (neglecting the 2πpar ameter becomes :

Ke = E

2



5b
3 0 −b

0 2b
3

2a
3

−b 2a
3

2a2

3b + 5b
3

0 −2b
3 −2a

3

b
3 −2a

3
b
3 − 2a2

3b

0 0 0

...

...

0 b
3 0

−2b
3 −2a

3 0

−2a
3

b
3 − 2a2

3b 0

4a2

3b + 2b
3

2a
3 −4a2

3b

2a
3

2a2

3b + b
3 0

−4a2

3b 0 4a2

3b


d A
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2. Show that the sum of the rows (and columns) 2, 4 and 6 of Ke must vanish and explain why.
Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.

Solution 2:

Row and column 2:

2b

3
+ 2a

3
− 2b

3
− 2a

3
= 0

Row and column 4:

−2b

3
− 2a

3
+ 4a2

3b
+ 2b

3
+ 2a

3
− 4a2

3b
= 0

Row and column 6:

b

3
− 2a

3
+ b

3
− 2a2

3b
− 4a2

3b
+ 4a2

3b
= 0

The explanation of why the sum of the components related to the 2, 4 and 6 columns and
rows are equal to zero, is because at this point the formulation of the stiffness matrix is un-
constrained, the nodes are free to move and due to that the rigidity of those degrees of free-
dom are equal to zero, allowing to have a rigid body motion. In that sense, the next step to
perform a complete analysis is to add restrictions in required nodes.

Row and column 1:

5b

3
−b + b

3
= b

Row and column 3:

−b + 2a

3
+ 2a2

3b
+ 5b

3
− 2a

3
+ b

3
− 2a2

3b
= b

Row and column 5:

b

3
− 2a

3
+ b

3
− 2a2

3b
+ 2a

3
+ 2a2

3b
+ b

3
= b

In contrast with the previous example, which the rows are related to the z direction compo-
nents and their sum is equal to zero, in this second demonstration the rows and columns 1, 3
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and 5 correspond to the degrees of freedom in the r direction and the result of the sum is dif-
ferent to zero. This is because of the intrinsic restriction in the matrix due to the axisymmetric
condition, in other words, the nodes are not permitted to move completely free through this
axis, because of the stiffness imposed.

3. Compute the consistent force vector fe for gravity forces b = [0,–g ]T T .

Solution 3:

The force vector for body forces is given by the expression:

fb =
∫

A
r Nbd A (0.13)

In which it is written the value of 2π just to remember that this vector is part of a structure
of revolution, but this value will cancel at the time of solving the system of equations. Now,
substituting the shape functions and the body force applied in the z direction (neglecting the
2π parameter):

fb =
∫

A
−g



0

r − r 2

a
0

r 2

a − zr
b

0
zr
b


d A

Integrating numerically the force vector, by using the same approach employed in the stiff-
ness matrix:

fb =
∫

A
Nb

det (J)

2
dξdη≈

p1∑
i=1

wi Nb
det (J)

2

Then, the force vector is:

fb =−g



0
a2b

9
0

a2b
9
0

a2b
9


d A

7



ASSIGNMENT 4.2

A five node quadrilateral element has the nodal configuration shown if the figure. Perspective
views of N e

1 and N e
5 are shown in the same figure.

Find five shape functions N e
i , i = 1, ...,5 that satisfy compatibility and also verify that their sum

is unity.

Figure 0.2: Five node quadrilateral element

Hint: develop N5(ξ,η) first for the 5-node quad using the line-product method. Then the corner
shape functions Ni (ξ,η), i = 1,2,3,4, for the 4-node quad (already given in the notes). Finally
combine Ni = Ni +αN5 determining α so that all Ni vanish node 5. Check that N1+N2+N3+
N4 +N5 = 1 identically.

Solution:

The method required to use in order to obtain the shape functions works as a direct con-
sequence of the definition of the natural coordinates, and it is based on simple polynomial
products. It is known that the method itself requires some rules to be verified. In that sense
not every element can be generated by this method, for instance the 5-node quadrilateral is
one specific case which it can not obtained directly using this method only. To perform this
procedure, first it required to obtain the line product of N5:

N5 = c5L1−2L2−3L3−4L4−1

For this shape function, we can observe that the equations of each side are:

• Side 1-2: η=−1

• Side 2-3: ξ= 1

• Side 3-4: η= 1

• Side 4-1: ξ=−1

Considering these equations, the expression for the node 5 is:

N5 = c5(1+η)(1−ξ)(1−η)(1+ξ) (0.14)
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Which vanishes over each node (1,2, 3 and 4). Now to obtain the value of c5, substitute the
values of the natural coordinate ξ= 0 and η= 0

N5 = c5(1+0)(1−0)(1−0)(1+0) = 1

Then c5 = 1, and the partial shape function is:

N5(ξ,η) = (1+η)(1−ξ)(1−η)(1+ξ) = (1−ξ2)(1−η2) (0.15)

Now, as the hint mentions, it is needed to obtain a relationship between the above equation
and the rest of the functions of the nodes 1, 2, 3 and 4 (Ni ), by using a parameter α.

Ni = Ni +αN5

Considering the first node N1:

N1 = N1 +αN5

= 1

4
(1−ξ)(1−η)+α(1−ξ2)(1−η2)

Substituting the natural coordinates of the node 5:

1

4
(1−0)(1−0)+α(1−02)(1−02) = 0

Solving for the value α:

α=−1

4
(0.16)

Substituting this value in each shape function of the nodes 1, 2,3 and 4:

N1 = 1

4
(1−ξ)(1−η)− 1

4
(1−ξ2)(1−η2)

= 1

4
(1−ξ)(1−η)[1− (1+ξ)(1+η)]

= 1

4
(1−ξ)(1−η)(−ξ−η−ξη)

Node 1:

N1 =−1

4
(1−ξ)(1−η)(ξ+η+ξη) (0.17)
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N2 = N2 − 1

4
N5

= 1

4
(1+ξ)(1−η)− 1

4
(1−ξ2)(1−η2)

= 1

4
(1+ξ)(1−η)[1− (1−ξ)(1+η)]

Node 2:

N2 = 1

4
(1+ξ)(1−η)(ξ−η+ξη) (0.18)

N3 = N3 − 1

4
N5

= 1

4
(1+ξ)(1+η)− 1

4
(1−ξ2)(1−η2)

= 1

4
(1+ξ)(1+η)[1− (1−ξ)(1−η)]

Node 3:

N3 = 1

4
(1+ξ)(1+η)(ξ+η−ξη) (0.19)

N4 = N4 − 1

4
N5

= 1

4
(1−ξ)(1+η)− 1

4
(1−ξ2)(1−η2)

= 1

4
(1−ξ)(1+η)[1− (1+ξ)(1−η)]

Node 4:

N4 = 1

4
(1−ξ)(1+η)(−ξ+η+ξη) (0.20)
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In order to prove the compatibility of the shape functions, it is required that one node of
the interelement boundaries is analyzed, to perform this, it is necessary to verify the order
of each polynomial and test that for “n” order, there are “n+1” points. The function of node
1 is tested and generalized for the rest of the nodes, this node belongs to the sides 1-2 and 1-4.

Side 1-2 (η=−1):

N1 = 1

4
(1−ξ)(1− (−1))(−ξ− (−1)−ξ(−1))

= 1

2
(1−ξ)

Side 1-4 (ξ=−1):

N1 = 1

4
(1− (−1))(1−η)(−(−1)−η− (−1)η)

= 1

2
(1−η)

Both shape functions are linear, that means n = 1 and have two nodes, n +1 = 2, so the com-
patibility condition is verified. This analysis is identical to the functions 2, 3 and 4.
Now, to verify that the sum of the shape functions is equal to 1, the first 4 equations are con-
sidered and evaluated:

Node 1 (ξ=−1,η=−1):

N1 = −1

4
(1−ξ)(1−η)(ξ+η+ξη)

= −1

4
(1− (−1))(1− (−1))(−1−1+ (−1)(−1)

= 1

Node 2(ξ= 1,η=−1):

N2 = 1

4
(1+ξ)(1−η)(ξ−η+ξη)

= 1

4
(1+ (−1))(1− (−1))(−1−1+ (−1)(−1)

= 1

Node 3(ξ= 1,η= 1):

N3 = 1

4
(1+ξ)(1+η)(ξ+η−ξη)

= 1

4
(1+ (−1))(1+ (−1))(−1−1+ (−1)(−1)

= 1

11



Node 4(ξ=−1,η= 1):

N4 = 1

4
(1−ξ)(1+η)(−ξ+η+ξη)

= 1

4
(1− (−1))(1+ (−1))(−1+1+ (−1)(−1)

= 1

The fifth function was previously verified in equation 0.15.
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