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Assignment 4.1 - Structures of revolution

1. Compute the entries of Ke for the following axisymmetric triangle:

r1 = 0, r2 = r3 = a, z1 = z2 = 0, z3 = b

The material is isotropic with ν = 0 for which the stress-strain matrix is,

E = E

 1 0 0
0 1 0
0 0 1

2


Figure (1) shows the geometric representation of an element of the cross section of the given
axisymmetric problem.

Figure 1 – Discretization of one axisymmetric triangle

The stiffness matrix of an axisymmetric linear triangular element is defined as:

Ke = 2π

∫
A

rBTEBdA (1)

where the matrix B can be expressed as follows:

B =
1

2A


∂N1

∂r
0 ∂N2

∂r
0 ∂N3

∂r
0

0 ∂N1

∂z
0 ∂N2

∂z
0 ∂N3

∂z

N1

r
0 N2

r
0 N3

r
0

∂N1

∂z
∂N1

∂r
∂N2

∂z
∂N2

∂r
∂N3

∂z
∂N3

∂r

 (2)

For an axisymmetric triangle, its shape functions are:

Ni =
1

2A
(ai + bir + ciz) (3)
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where:

ai = rjzk − rkzj
bi = zj − zk
ci = rk − rj

Considering Figure (1), the previously introduced constants are computed.

Node r z ai bi ci
1 0 0 ab -b 0
2 a 0 0 b -a
3 a b 0 0 a

As a result and considering that A = 1
2
ab, the shape functions become:

N1 =
1

2A
(ab− br) = 1− r/a

N2 =
1

2A
(br − az) = r/a− z/b

N3 =
1

2A
(az) = z/b

Computing the corresponding derivatives and substituting into equation (2), matrix B reads:

B =
1

2A


−b 0 b 0 0 0

0 0 0 −a 0 a
ab
r
− b 0 b− az

r
0 az

r
0

0 −b −a b a 0

 =


− 1
a

0 1
a

0 0 0

0 0 0 −1
b

0 1
b

1
r
− 1

a
0 1

a
− z

rb
0 z

rb
0

0 − 1
a
−1
b

1
a

1
b

0

 (4)

Substituting the obtained expressions into equation (1), the expression for Ke yields:

∫
A

2πEr



− 1
a

0 1
r
− 1

a
0

0 0 0 − 1
a

1
a

0 1
a
− z

rb
−1
b

0 −1
b

0 1
a

0 0 z
rb

1
b

0 1
b

0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1/2




− 1
a

0 1
a

0 0 0

0 0 0 −1
b

0 1
b

1
r
− 1

a
0 1

a
− z

rb
0 z

rb
0

0 − 1
a
−1
b

1
a

1
b

0

 dA
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Additionally, if an isoparametric formulation is used, the strain and geometric coordinates
can be approximated with the following expression:

1
r
z
ur
uz

 =


1 1 1
r1 r2 r3
z1 z2 z3
ur1 ur2 ur3
uz1 uz2 uz3


 N1 = ζ1
N2 = ζ2
N3 = ζ3

 =


1 1 1
0 a a
0 0 b
ur1 ur2 ur3
uz1 uz2 uz3


 ξ

η
1− ξ − η

 (5)

where ζi, ξ and η are triangular and natural coordinates, respectively.

As a result, equation (1) can be expressed as:

Ke = 2π

∫
A

rBTEBdA = 2π

∫ a

0

∫ b

0

rBTEBdzdr = 2π

∫ 1

0

∫ 1

0

rBTEB | J | dξdη (6)

where the matrix J is the Jacobian, that for the given problem is defined by:

J =

[ ∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

]
=

[
−a −b
0 −b

]
The integration of the stiffness matrix will be performed using an one-point Gauss numerical
integration, in which the function must be evaluated at the the centroid of the triangle element
(r = 2a/3 and z = b/3), i.e. ξ1 = ξ2 = ξ3 = 1/3. Then, the final expression to compute the
stiffness matrix becomes:

K1 =
1

2

p∑
k=1

q∑
l=1

wkwlrk,lB
T
k,lBk,l | Jk,l |

where p = q = 1 and the weights wk and wl for the one-point Gauss integration are both
equal to 1. Thus, the stiffness matrix is equal to:

K = E



5b
12

0 − b
4

0 b
12

0

0 b
6

a
6

− b
6

−a
6

0

− b
4

a
6

2a2+5b2

12b
−a

6
−2a2−b2

12b
0

0 − b
6

−a
6

2a2+b2

6b
a
6

−a2

3b

b
12
−a

6
−2a2−b2

12b
a
6

2a2+b2

12b
0

0 0 0 −a2

3b
0 a2

3b



1The term 2π factor is suppressed, since it cancels out with the same term on the r.h.s of Ku = f . Additionally,
the expression is multiplied by 1/2 so that the element area is correctly computed in cases where the weights are not
normalized.
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2. Show that the sum of the rows (and columns) 2, 4 and 6 of Ke must vanish and
explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does
not vanish, and explain why.

For row and column 2:

0 +
b

6
+
a

6
− b

6
− a

6
+ 0 = 0

For row and column 4:

0− b

6
− a

6
+

2a2 + b2

6b
+
a

6
− a2

3b
= 0

For row and column 6:

0 + 0 + 0 +−a
2

3b
+ 0 +

a2

3b
= 0

The summation of the rows and columns 2, 4 and 6 is equal to 0 due to the fact that the model
allows for a rigid-body motion in the z-direction. If the system of linear equations Ku = f is
analyzed, it can be seen that the equations 2, 4 and 6 are related to the displacements and
forces in the z-direction of each one of the nodes. In the particular case of rigid motion and
no external forces in the z-direction, the coefficients in the stiffness matrix must cancel out
since the displacement values in rows 2, 4 and 6 will be the same.

On the other hand, due to the symmetry condition imposed, rigid motion in the r-direction
is not possible. This is the reason why, for rows and columns 1, 3 and 5 the coefficients do
not vanish.

3. Compute the consistent force vector f e for gravity forces b = [0,−g]T .

The force vector due to the weight of the element can be calculated using the following
expression:

fb = 2π

∫
A

rNTbdA (7)

Considering the body force vector b = [0,−g]T and the previously computed shape functions,
the expression (7) reduces to:

fb = 2π

∫
A

1

2A


ab− br 0

0 ab− br
br − az 0

0 br − az
az 0
0 az


[

0
−g

]
rdA

As done for the stiffness matrix, the integral can be computed using a Gaussian numerical
integration:
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fb
2 =

1

2

p∑
k=1

q∑
l=1

wkwlrk,lN
T
k,lb | Jk,l |

Thus, the force vector becomes:

fb =



0

−a2bg
9

0

−a2bg
9

0

−a2bg
9



2Once again, the term 2π factor is suppressed, since it cancels out with the same term on the l.h.s of Ku = f and
the expression is multiplied by 1/2 so that the element area is correctly computed in cases where the weights are not
normalized. The weights are the same used for the stiffness matrix.
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Assignment 4.2 - Isoparametric representation

A five node quadrilateral element has the nodal configuration shown if the figure.
Perspective views of N e

1 and N e
5 are shown in the same figure.

Find five shape functions N e
i , i = 1, . . . , 5 that satisfy compatibility and also verify

that their sum is unity.

Figure 2 – Five node quadrilateral element

Hint: develop N5(ξ, η) first for the 5-node quad using the line-product method. Then
the corner shape functions Ni(ξ, η), i = 1, 2, 3, 4, for the 4-node quad (already given in
the notes). Finally combine Ni = Ni + αN5 determining α so that all Ni vanish node 5.
Check that N1 +N2 +N3 +N4 +N5 = 1 identically.

Using the line-product method, N5(ξ, η) has the following form:

N5(ξ, η) = c5L1−2L2−3L3−4L4−1

Taking into consideration that for sides 1−2, 2−3, 3−4, and 4−1, the coordinates are ξ = −1
or ξ = 1, η = −1 or η = 1, ξ = 1 or ξ = −1 and η = 1 or η = −1, respectively. Replacing in the
previous expression:

N5(ξ, η) = c5(1 + η)(1− ξ)(1− η)(1 + ξ)

which plainly vanishes over nodes 1, 2, 3 and 4. The expression can be normalized by finding the
value c5 that satisfies the expression, it can be obtained that:

N5|at node 5 = 1

= c5(1 + 0)(1− 0)(1− 0)(1 + 0) = 1

⇒ c5 = 1

Thus,

N5(ξ, η) = (1 + η)(1− ξ)(1− η)(1 + ξ) = (1− ξ2)(1− η2)

As advised in the hint of the problem, the remaining shape functions can be expressed as:

Ni = Ni + αN5

where Ni(ξ, η) is the corresponding shape functions for the 4-noded quadrilateral element and α is
determined such that all Ni vanish at node 5.
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For node 1:

N1 = N1 + αN5

=
1

4
(1− ξ)(1− η) + α(1− ξ2)(1− η2)

At node 5 η = ξ = 0, whence:

1

4
(1− 0)(1− 0) + α(1− 02)(1− 02) = 0

⇒ α = −1

4

which will be the same for all Ni. Then,

N1 =
1

4
(1− ξ)(1− η)− 1

4
(1− ξ2)(1− η2)

=
1

4
(1− ξ)(1− η)[1− (1 + ξ)(1 + η)]

=
1

4
(1− ξ)(1− η)(−ξ − η − ξη)

= −1

4
(1− ξ)(1− η)(ξ + η + ξη)

For node 2:

N2 = N2 −
1

4
N5

=
1

4
(1 + ξ)(1− η)− 1

4
(1− ξ2)(1− η2)

=
1

4
(1 + ξ)(1− η)[1− (1− ξ)(1 + η)]

=
1

4
(1 + ξ)(1− η)(ξ − η + ξη)

For node 3:

N3 = N3 −
1

4
N5

=
1

4
(1 + ξ)(1 + η)− 1

4
(1− ξ2)(1− η2)

=
1

4
(1 + ξ)(1 + η)[1− (1− ξ)(1− η)]

=
1

4
(1 + ξ)(1 + η)(ξ + η − ξη)
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For node 4:

N4 = N4 −
1

4
N5

=
1

4
(1− ξ)(1 + η)− 1

4
(1− ξ2)(1− η2)

=
1

4
(1− ξ)(1 + η)[1− (1 + ξ)(1− η)]

=
1

4
(1− ξ)(1 + η)(−ξ + η + ξη)

In summary, the shape functions for the 5-noded quadrilateral elements are:

N1 =
1

4
(1− ξ)(1− η)(−ξ − η − ξη)

N2 =
1

4
(1 + ξ)(1− η)(ξ − η + ξη)

N3 =
1

4
(1 + ξ)(1 + η)(ξ + η − ξη)

N4 =
1

4
(1− ξ)(1 + η)(−ξ + η + ξη)

N5 = (1− ξ2)(1− η2)

The compatibility check can be performed by analyzing one of the interelement boundary nodes.
For instance, node 1 belongs to the boundaries 1 − 2 and 1 − 4. Over the side 1 − 2, η = −1 and
N1 becomes:

N1 =
1

4
(1− ξ)(1− (−1))(−ξ − (−1)− ξ(−1))

=
1

2
(1− ξ)

thus N1 is a linear function of ξ. Similarly, over side 1− 4, ξ = −1 and N1 becomes:

N1 =
1

4
(1− (−1))(1− η)(−(−1)− η − (−1)η)

=
1

2
(1− η)

thus N1 is a linear function of η. Consequently the polynomial variation order is 1 over both sides.
Because there are two nodes on each side the compatibility condition is satisfied.

Analogous analyses can be performed for nodes 2,3, and 4.
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To verify that the sum of the shape functions is equal to 1, it is possible to consider the general
form of the Ni for i = 1, 2, 3, 4. Thus,

5∑
i=1

Ni = N1 +N2 +N3 +N4 +N5

=
( 4∑
j=1

Nj + αjN5

)
+N5

since αj = α = 1/4:

=
4∑
j=1

Nj +
4∑
j=1

αN5 +N5

=
4∑
j=1

Nj + 4
(
− 1

4

)
N5 +N5

=
4∑
j=1

Nj + ���−N5 + ��N5

=
4∑
j=1

Nj

Because Nj were defined as the shape functions of the 4-noded quadrilateral element, their sum
has been proven to be equal to 1. Hence, the condition is verified for the 5-noded quadrilateral
element.
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