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1 Assignment 4.1

1.1 a), b)
If writing a relation between the coordinates of the nodes of an element and the Cartesian
coordinates, it is obtained that

x = N1x1 +N2x2 +N3x3 (1)

Therefore the shape functions are chosen such that Ni must be a function which is unity at the
nodes. Specifically, the shape functions corresponding to the depicted nodes are


N1 = ξ(ξ−1)

2
N2 = ξ(ξ+1)

2
N3 = −(ξ − 1)(ξ + 1)

(2)

Then, using the nodal coordinates in the local system

x = ξ(ξ + 1)
2 l − (ξ − 1)(ξ + 1)( l2 + αl) = l

2(1 + ξ)(2α− 2ξα + 1) (3)

It is possible to see from equation (3) that the coordinates of the nodes are obtained if the
value of ξ are substituted. Now the derivative of (3) with respect to ξ is easily calculated.

dx

dξ
= l

2(1 − 4αξ) (4)

Equation (4) is clearly the Jacobian. It is to be noted that J = l/2 when α = 0. On the
other hand, to check weather the value of the Jacobian is positive on the whole domain when
1/4 < α < 1/4, equation (4) may be plotted for the extreme cases ξ = 1,−1 as a function of
alpha. Figure 1 shows that the jacobian is always positive for this range of α, being it null at
the extreme values.

The strain displacement matrix is simply calculated as

B = J−1dN
dξ

= 2
1 − 4αξ [ξ − 1/2, ξ + 1/2, −2ξ] (5)
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Figure 1: Variation of the Jacobian at the extreme points for various values of α.

2 Assignment 4.2

2.1 a)
The stiffness matrix of an element which is revolved from its original form can be calculated
taking into account that the volume integral can be simply translated into a surface integral
by considering the whole ring of revolution. In such a case,

Kij = 2π
∫

BT
i DBjrdrdz (6)

Where D is the given strain-stress matrix for an isotropic material with zero Poisson ratio. The
B matrix is calculated as

B =



1 2

1 ∂Ni/∂r 0

2 0 ∂Ni/∂z

3 Ni/r 0

4 ∂Ni/∂z ∂Ni/∂r


Now, the shape functions of the triangle are determined based on the coordinates we are given.
The plot of the nodal coordinates is shown in Fig. 2.
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Figure 2: Local numbering of the element.

Of course as a condition for completeness the shape functions must sum one at each node, and
zero at the others. The shape functions are described as

Ni = ai + bir + ciz

2∆ (7)

Where (in cyclic order, ijm)


ai = rjzm − rmzj

bi = zj − zm

ci = rm − rj

(8)

When computed, taking into account that ∆ = ab/2,


N1 = 1 − r/a

N3 = z/b

N2 = 1 −N1 −N3 = r/a− z/b

(9)

The parameters r, z can be expressed in terms of the shape functions by the following relation.

r = N1r1 +N2r2 +N3r3 = r − za
b

+ za
b

= r

z = N1z1 +N2z2 +N3z3 = z
(10)

When the derivatives are done with respect to the variables of each shape function the following
matrix is obtained
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B =



1 2 3 4 5 6

1 −1/a 0 1/a 0 0 0

2 0 0 0 −1/b 0 1/b

3 1/r − 1/a 0 1/a− z/(br) 0 z/(br) 0

4 0 −1/a −1/b 1/a 1/b 0


Now, the simplest numerical integration procedure is to compute all quantities at the centroid
point (r = 2a/3, z = b/3).

Kij = 2πBT
i DBjr∆ (11)

Where B is the value of the stain-displacement matrix at the centroid point. The complete
matrix will thus be

K = 2πBTDBr∆ (12)

When doing so with Matlab (code attached) the following matrix is obtained

K = Eπ



1 2 3 4 5 6

1 5b/6 0 -b/2 0 b/6 0

2 b/3 a/3 -b/3 -a/3 0

3 b/3+ 2a2/(3b) -a/3 b/3- 2a2/(3b) 0

4 b/3+ 2a2/(3b) a/3 -2a2/(3b)

4 Symm. b/3+ 2a2/(3b) 0

6 2a2/(3b)



2.2 b)
To check that the sum of rows and columns 2,4,6 vanish but not the 1,3,5, little operations
are added to the code that indeed confirm that rows and columns 2,4,6 sum zero but rows and
columns 1,3,5 sum non-zero. The reason for this is that there is symmetry about the z axis,
and therefore the stresses are independent of the θ coordinate, which means that the forces on
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the component z have to be in equilibrium, but not the r component (since there is symmetry).
This explains the vanishing of these rows pertaining to the z component.

∑
columns

=
∑
rows

= [Eπb2 0 Eπb

2 0 Eπb

2 0] (13)

2.3 c)
The distributed body forces can be found as

f =
∫
S

NT
s bdS (14)

Where Ns denotes the shape function matrix evaluated along the surface where the surface trac-
tion acts. Integrating the equations explicitly along for the three surfaces the total distribution
of body force is obtained [1].

f = 2πr∆
3 [br bz br bz br bz]T = 2πa2b

9 [0 − g 0 − g 0 − g]T = (15)

A Appendix:Code

1 syms a b r z
2

3 E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1/2];
4

5 B = [-1/a 0 1/a 0 0 0; ...
6 0 0 0 -1/b 0 1/b; ...
7 1/r-1/a 0 1/a-z/(r*b) 0 z/(r*b) 0; ...
8 0 -1/a -1/b 1/a 1/b 0];
9

10 B = subs(B,r,2*a/3);
11 B = subs(B,z,b/3);
12

13 A = E*B;
14

15 Bt = transpose(B);
16

17 K = Bt*A;
18 K = K*b*a*2*a/3;
19 %Sum of rows and columns 2,4,6
20 sum(K(:,6))
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21 sum(K(:,4))
22 sum(K(:,2))
23 sum(K(2,:))
24 sum(K(4,:))
25 sum(K(6,:))
26

27 %Sum of rows and columns 1,3,5
28 sum(K(:,1))
29 sum(K(:,3))
30 sum(K(:,5))
31 sum(K(1,:))
32 sum(K(3,:))
33 sum(K(5,:))
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