Computational Structural Mechanics and Dynamics

Assignment 4

Author: Cristina García Albela MS in Computational Mechanics

Assignment 4.1

1. Compute the entries of K_{e} for the following axisymmetric triangle:

$$
r_{1}=0, r_{2}=r_{3}=a, z_{1}=z_{2}=0, z_{3}=b
$$

The material is isotropic with $v=0$ for which the stress-strain matrix is:

$$
\boldsymbol{E}=E\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

2. Show that the sum of the rows (and columns) 2,4 and 6 of K_{e} must vanish and explain why. Show as well that the sum of rows (and columns) 1,3 and 5 does not vanish, and explain why.
3. Compute the consistent force vector f_{e} for gravity forces $\boldsymbol{b}=[0,-g]^{T}$.
(Solutions attached in next pages)
1)

As we are working with a triangle element, the process to derive the stiffness equations of the 3-node trougle is going to be uso, bert taking into account the new system of coordinates

- If will be 2 dof per node, so that $u_{i}=\left\{\begin{array}{l}U_{i}(r, z) \\ U_{z i}(r, z)\end{array}\right\}$. As they are linear elements, the displacements can bo

$$
\text { expressed as }\left\{\begin{array}{l}
u_{i}=a_{1}+a_{2} r_{i}+a_{3} z_{i} \\
u_{z_{i}}=b_{1}+b_{2} r_{i}+b_{3} z_{i}
\end{array}\right\} \times 3
$$

- Solving the unknowns, the displacement can bo wite as (for case Uri as example)
where the area $2 A=\left(r_{j} z_{k}-r_{k} z_{j}\right)+\left(r_{k} z_{i}-r_{i} z_{k}\right)+\left(r_{i} z_{j}-r_{j} z_{i}\right)$
- As in the cartesian system, for the linoor twangle. the displacements com ba defined too us

$$
\left\{\begin{array}{l}
u_{r}=U_{r_{i}} N_{i}+U_{r_{j}} N_{j}+U_{r_{k}} N_{k} \\
U_{z}=U_{z i} N_{i}+U_{z j} N_{j}+U_{r k} N_{k}
\end{array}\right.
$$

- Courburing both definitions of Mr^{2} and Mz_{z}, the value of shape furchons are optained.
- Wanted for this case (index 1,2,3)

$$
\begin{aligned}
& N_{1}=\frac{1}{2 A}\left[\left(r_{2} z_{3}-z_{2} r_{3}\right)+z_{23} r+r_{32} z\right] \\
& N_{2}=\frac{1}{2 A}\left[\left(r_{3} r_{1}-r_{1} z_{3}\right)+z_{31} r+r_{13} z\right] \\
& N_{3}=\frac{1}{2 A}\left[\left(r_{1} z_{2}-z_{2}\right)+z_{2} r+r_{21} z\right]
\end{aligned}
$$

- Now, the different needed cperatars are defined.

$$
\left.D=\left[\begin{array}{cc}
\partial / 2 r & 0 \\
0 & \theta / \partial z \\
1 / r & 0 \\
\partial / \partial z & \partial / \partial \tau
\end{array}\right] \quad \begin{array}{cc}
B_{1}=D N \\
\text { some for } \\
\text { nodes } 2,3
\end{array}\right]\left[\begin{array}{cc}
z_{23} & 0 \\
0 & r_{32} \\
\frac{r_{223}-z 2 r 3}{r}+z 23+\frac{r_{32}}{r} z & 0 \\
r_{32} & z_{23}
\end{array}\right]
$$

- Finally as the conshtuhne matrix is know ([Є]), the shiftiness mature cam be defined and calculated

$$
\left[\ell^{e}\right]=\iiint_{V}[B]^{T}[\epsilon][B] d V=2 \pi \iint_{A}[B]^{\top}[D][B] r d r d z
$$

Dotting for this type of element $\left\{r=\frac{r_{1}+r_{2}+r_{3}}{3}=\bar{r}\right.$

$$
\left[k^{e}\right]=2 \pi \vec{r} A[\bar{B}]^{\top}[\epsilon][\bar{B}]
$$

- Substituting tue values, and competing with Matlab help, the k matrix is obtained as:

$$
\left[k^{e}\right]=\frac{2 \pi \in}{3 b}\left[\begin{array}{cccccc}
5 b^{2} / 4 & 0 & -3 b^{2} / 4 & 0 & b^{2} / 4 & 0 \\
0 & b^{2} / 2 & a b / 2 & -b^{2} / 2 & -a b / 2 & 0 \\
-3 b^{2} / 4 & a b / 2 & a^{2} / 2+5 b^{2} / 4 & -a b / 2 & b^{2} / 4-a^{2} / 2 & 0 \\
0 & -b^{2} / 2 & -a b / 2 & a^{2}+b^{2} / 2 & (a b) / 2 & -a^{2} \\
b^{2} / 4 & -a b / 2 & b^{2} / 4-a^{2} / 2 & a b / 2 & a^{2} / 2+b^{2} / 4 & 0 \\
0 & 0 & 0 & -a^{2} & 0 & a^{2}
\end{array}\right]
$$

b)

- Deng the sue of the columns and rows of the k^{e} matixx, writing the result in vector form (row and colum vectors respectively) the next results are obtained:

1. Sum of the columns:

$$
S C=\frac{2 a^{2} b \pi}{3}\left[\begin{array}{llllll}
\frac{3 b^{2}}{4} & 0 & \frac{3 b^{2}}{4} & 0 & \frac{3 b^{2}}{4} & 0
\end{array}\right]
$$

2. Sum of the rows:

$$
S R=\frac{2 a^{2} b \pi}{3}\left[\begin{array}{lllll}
\frac{3 b^{2}}{4} & 0 & \frac{3 b^{2}}{4} & 0 & \frac{3 b^{2}}{4}
\end{array} 0\right]^{\top}
$$

- As it can be checked the sue of 2nd, 4th and 6th columbus and rows are equal to zero, whereas the 1st, std and 5 the are not. Having a triangle element in a plane case, if the same displacement in each mode for vertical and houzontal directions, the result will be that the element charge his original position but it doesn't suffer any deformation:
initial posihon displacowert in x-dirchon

dusplacauent in y-direction

Whereas, working with an axissmuntuc triangle, if the displacement is made in z-direction, ally deformation is introduced, dust a change on the element position, that means that any energy interchange has been made. But, if the displacement is in σ-direction, due to the condition of axisymmetric, the discretized body will suffer a deformation in its shape with the correspondurg energy dussupation. That's why the Le possitions related to z-displacement summation is equal to zero, bert not the relatives to r - displacement ones.
3)

- Defined the gravity forces $b=[0,-9]^{\top}$
- For an axisyumetuc element, working with cylindrical caordivetes, body forces: $b(r, z)=\left[\begin{array}{l}b_{i}(r, z) \\ b_{z}(r, z)\end{array}\right]$
- In this case, just the $b z(r, z)$ coueponent will be considered, sa as:

$$
b_{z}(r, z)=-9
$$

- To calculate the forces:

$$
\{f b\}=\iiint_{V}[N]^{T}\{b\} d V=2 \pi \iint_{A}[N]^{T}\{b\} r d A
$$

- So for each node:

$$
\left\{f_{b i}\right\}=\left[\begin{array}{c}
f_{b i r} \\
f_{b i z}
\end{array}\right]=\frac{2 \pi A \bar{r}}{3}\left[\begin{array}{c}
0 \\
b z_{i}
\end{array}\right]
$$

- Finally the fe vector, is computed:

$$
\{f e\}=\frac{2 \pi a^{2} b}{9}\left[\begin{array}{c}
0 \\
-9 \\
0 \\
-9 \\
0 \\
-9
\end{array}\right]
$$

Assignment 4.2

A five node quadrilateral element has the nodal configuration shown in the figure. Perspective views of N_{1}^{e} and N_{5}^{e} are shown in the same figure.
Find five shape functions $N_{i}^{e}, i=1, \ldots 5$ that satisfy compatibility and also verify that their sum is unity.

(Solutions attached in next pages

Isoparametric shape funckons can be directly constricted by geometric considerations. The uethed is based on the obsenation that isoparametuc fuctions are given as products of polynomial expressions in the natural coordinates, so that

$$
N_{i}{ }^{e}=C_{i} L_{1} L_{2} \ldots L_{m}
$$

Where 4 are tue homogeneous equations of lines or curves expressed as linear funchons in natural ceorduetes. and Ci is the nomelization coefficient, so that Ni^{e} has value 1 at the th node.
For 2D isoparametric elements, shape funchons will be achieved following the established steps of the method.

1) Select the L_{j} as the minimal number of hues that cross ale the nodes except the ith.
2) Establish $\mathrm{Ci}^{\text {i }}$ in order to $\mathrm{Ni}^{e}=1$ at $i^{\text {th }}$
3) Die vanishes over abe element sides that dent contain i.

- Looking the exercise case, a 5.-node quadrilateral element, the steps to define the shape tunchons will be:

1) Obtain N i shape funchons for $\tau=1,2,3,4$ as the Fth mode doesnit exist.
2) Obtain Ns function.
3) Combaiu the 4-node quadulateral funchons with N5, Isle order to obtain the final result ($\mathrm{Ni}=\mathrm{Ni}+\alpha \mathrm{Ns}_{5}$). The α parameter will be calculated to ensure Heat the final functions $N i$ meet them requirements.
4) Shape functions for 4-nODE quAdrilateral

- NODE 1

$$
\left.\begin{array}{l}
N_{1}^{e}=G L_{23} L_{34} \\
L_{34}: \eta=1 \\
L_{23}: q=1
\end{array}\right\} \quad N_{1}^{e}=G(q-1)(\eta-1)
$$

$$
\text { As } N(\xi, \eta)=N(-1,-1)
$$

$$
\begin{aligned}
& 1=G(-1-1)(-1-1)=4 C_{1} \quad G=\frac{1}{4} \\
& N_{i} e=\frac{1}{4}(\{-1)(\eta-1)
\end{aligned}
$$

- NODE 2

$$
\left.\begin{array}{l}
N_{2}^{e}=C_{2} L_{34} L_{14} \\
L_{34}: \eta=1 \\
L_{14}: \eta=-1
\end{array}\right\} N_{2}=C_{2}(\eta-1)(\xi+1)
$$

As $N_{2}(q, \eta)=N_{2}(1,-1)$

$$
\begin{aligned}
& 1=c_{2}(-1-1)(1+1)=-4 c_{2} \quad c_{2}=\frac{-1}{4} \\
& N_{2} e=\frac{1}{4}(1-\eta)(1+\xi)
\end{aligned}
$$

- NODE 3

$$
\left.\begin{array}{l}
N_{3}^{e}=C_{3} L_{14} L_{12} \\
L_{14}: \quad\{=-1 \\
L_{12}: \eta=-1
\end{array}\right\} N_{3}=C_{3}(\xi+1)(\eta+1)
$$

As $N_{3}(1, \eta)=N_{3}(1,1)$

$$
\begin{aligned}
1 & =c_{3}(1+1)(1+1)=4 c_{3} \quad c_{3}=\frac{1}{4} \\
N_{3}^{e} & =\frac{1}{4}(\{+1)(\eta+1)
\end{aligned}
$$

$$
\left.\begin{array}{l}
N_{4}^{e}=C_{4} L_{23} L_{12} \\
L_{23}: \quad\{=1 \\
L_{12}: \quad n_{4}^{e}=-1
\end{array}\right\} \quad C_{4}(\{-1)(\eta+1)
$$

2) SHAPE FUNCTION N_{5}^{e}

$$
\left.\begin{array}{l}
N_{5}^{e}=C_{5} L_{12} L_{23} L_{34} L_{14} \\
L_{12}:\{=-1 \\
L_{23}: \eta=1 \\
L_{34}:\{=1 \\
L_{14}: \eta=-1
\end{array}\right\}
$$

$$
N_{5}^{e}=C_{5}(\xi+1)(\eta-1)(\xi-1)(\eta+1)
$$

As $N_{5}\left(\{, \eta)=N_{5}(0,0)\right.$

$$
\begin{aligned}
1=C_{5} & N_{5}^{e}=(q+1)(q-1)(\eta-1)(\eta+1) \\
& N_{5}^{e}=\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)
\end{aligned}
$$

3) COMbINED the OBTAINED FUNCTIONS $\mathrm{Ni}^{e}=\mathrm{Ni}^{e}+\alpha \mathrm{N}_{5}^{e}$

- The value of α is going to be determined

$$
* N_{1}^{e}=\frac{1}{4}(\xi-1)(\eta-1)+\alpha\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)
$$

$$
\text { At } N_{5}(0,0) \rightarrow N_{1}^{e}=0
$$

$$
\begin{aligned}
& 0=\frac{1}{4}(0-1)(0-1)+\alpha(1-0)(1-0) \quad \alpha=\frac{-1}{4} \\
& * N_{2}^{e}=\frac{1}{4}(1-\eta)(1+\xi)+\alpha\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)
\end{aligned}
$$

At rode $5(0,0) \rightarrow N_{2} e^{e}=0$

$$
\begin{aligned}
0 & =\frac{1}{4}(1-0)(1+0)+\alpha(1-0)(1-0) \alpha=\frac{-1}{4} \\
* N_{3}^{e} & =\frac{1}{4}(\xi+1)(\eta+1)+\alpha\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)
\end{aligned}
$$

At rode $5(0,0) \longrightarrow N_{3}{ }^{e}=0$

$$
\begin{aligned}
0 & =\frac{1}{4}(0+1)(0+1)+\alpha(1-0)(1-0) \alpha=\frac{-1}{4} \\
* N_{4}^{e} & =\frac{1}{4}(1-\xi)(1+\eta)+\alpha\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)
\end{aligned}
$$

At rode $5(0,0) \rightarrow N_{4}{ }^{e}=0$

$$
0=\frac{1}{4}(1-0)(1+0)+\alpha(1-0)(1-0) \alpha=\frac{-1}{4}
$$

FINAL SHAPE FUNCTIONS:

$$
\begin{aligned}
& N_{1}^{e}=\frac{1}{4}\left[\left(\{-1)(\eta-1)-\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)\right]\right. \\
& N_{2}^{e}=\frac{1}{4}\left[(1-\eta)(1+\xi)-\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)\right] \\
& N_{3}^{e}=\frac{1}{4}\left[(\xi+1)(\eta+1)-\left(1-\left\{^{2}\right)\left(1-\eta^{2}\right)\right]\right. \\
& N_{4}^{e}=\frac{1}{4}\left[(1-\xi)(1+\eta)-\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)\right] \\
& N_{5}^{e}=\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)
\end{aligned}
$$

- SUM OF THE Shape fUNCTIONS.
- If local support and compatibility are satisfied, the sume of the obtained shape flenchons should be equal to one.
- The local support can bo checked trying with any of the s shape frenckons the values achieved if any rode coordinates are introduced. About the interelement cocupatbility, as we just have che element, the condition can be chocked looking to the kind of shape frenctions achieved. As all of them are polynomial frenchons, they are gong to be deuvable.
- Now, the sum of the shape frenchons is done:

$$
\begin{aligned}
& N_{1}^{e}+N_{2}^{e}+N_{3}^{e}+N_{4}^{e}+N_{5}^{e}= \\
& \frac{1}{4}[(1-\eta)(1-\xi)+(1-\eta)(1+\xi)+(1+\eta)(1+\xi)+(1-\xi)(1+\eta)]+ \\
& +\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)-4 \frac{1}{4}\left(1-\eta^{2}\right)\left(1-\xi^{2}\right)= \\
& =\frac{1}{4}(1-\xi-\eta+\eta \xi+1+\{-\eta-\eta \xi+\{\eta+\{+\eta+1+1+\eta-\xi+\xi \eta)= \\
& =\frac{4}{4}=1 \\
& N_{1}^{e}+N_{2}^{e}+N_{3}^{e}+N_{4}^{e}+N_{5}^{e}=1
\end{aligned}
$$

