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1 Assignment 4.1

1.1 Statement

A 3-node straight bar element is defined by 3 nodes: 1, 2 and 3 with axial coordinates x1, 25 and x3 respectively
as illustrated in figure below. The element has axial rigidity EA, and length [ = x1 — x2. The axial displacement
is u(x). The 3 degrees of freedom are the axial node displacement w4, us and us. The isoparametric definition

of the element is
1 1 17 [N?

1
x| = |x1 x2 x3| |N§ (D
u up uz us| | N3

in which N{1(¢) are the shape functions of a three bar element. Node 3 lies between 1 and 2 but is not
necessarily at the midpoint = = [/2. For convenience define,

x1=0 To =1 1’3:(%—‘1-0[)[ 2

where —0.5 < « < 0.5 characterizes the location of node 3 with respect to the element center. If « = 0 node 3
is located at the midpoint between 1 and 2.

Question 1. From equation 3 and the second equation of 1 get the Jacobian J = dz/ d¢ in terms of [, o and
£. Show that,

* if1/4 <« < 1/4 then J > 0 over the whole element -1 < £ < 1

* if « =0, J = 1/2 is a constant over the element.

Question 2. Obtain the 1x3 strain displacement matrix B relating e = du/dx = Bu® where u° is the column
3-vector of the node displacement w1, us and ugz. The entries of B are functions of [, « and &.

1.2 Solution
Question 1 We will start by defining the isoparamentric element:
=0 &=1 &G=3i+a (3)

The transformation must follow:
x=A8+BE+ O (@)

Then we have the following system of equations:

1 -1 1] |A 0
0 0 1| (B|=|(1/2+a) (5)
11 1| |C l
Solving and substituting yields:
l
r=(—2a? +§+1+2a)5 6)
Obtaining the jacobian becomes very simple:
de 1
== =_(1-4
J 3 ( af) @)
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We must now proof that J > 0 in « € (—1, 1). It is a linear equation so checking that the limits are positive

(non-strictly, since its an open interval) is sufficient. More formaly:
J(@) >0, a€(ag,a) <= J(ag),J(a1) >0 8

where oy and «; are ii respectively. Evaluating at this limits yields:

J

. (1+¢)
o 9
l
, =318

Ot:JrZ

N | =~

J

[\]

Since ¢ € [—1, +1], we can check that both previous expressions are 0 in the worst case, positive in all others.
As said before, the inequality needs not be strict so we have confirmed that J > 0.

Moving on to the following assertion, it says that for « = 0, J is half the length in all domain. Let’s
start by substituting in equation 7:

l l

Question 2. We must first define our shape functions:

Ni(€) = —560-8)
No(€) = +5£(1 =€) an
N3(§) =1-¢
Let’s now compute their derivatives:
o)
s % ¢ (12)
i _ e

We only need the inverse of the jacobian. Recalling equation 7 we have that:

2

71 o
S i 100

(13)

Then matrix B is:

3
- |1
B= I(1-4af) |5 (14)

Computational Solid Mechanics and Dynamics 2 Numerical Methods in Engineering



Eduard Gémez March 9, 2020

2 Assignment 4.2

2.1 Statement

Question 1. Compute the entries of K¢ for the following axisymmetric triangle:

rr =0 T =a r3s=a

The material is isotropic with v = 0 for which the stress-strain matrix is,

(15)

O = O O
= O O O

Question 2. Show that the sum of the rows (and columns) 2, 4 and 6 of K¢ must vanish and explain why.
Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.

Question 3. Compute the consistent force vector f¢ for gravity forces b = [0, —g]7T.

2.2 Solution

Question 1. To compute the stiffness matrix we’ll use the following expression:
K° = BTEBdV =27 | BTEBrdS (16)
Q3 Q2

where Q3 is the whole 3D domain and 22 is the 2D cross-sectional simplified domain. In order to obtain B we
must first define the shape functions:

N1 (’I“, Z) =1- C
T z
N. =__Z a7
2 (7', Z) a b
Ns(r,z) = %
Now we can obtain matrix B according to its definition:
AN,
dr 0
B =[B1,B>,B;] where B, = = (18)
Moo
AN,  dN,
L dz dr ]
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It can be seen that it is a function of r and z. To avoid over-complicating the integral in equation 17 we can
approximate it by evaluating it at the barycenter r. = £[2a, b]. This yields:

-1 0L 0o]o0 o0
0 0] 0 —3]|0 %
B— b b (19)
20 02 0|2 O
IR
We can now transform equation 17:
K¢ =2rn / BTEBrdS = 2rBTEBr.S (20)
02
Evaluating this becomes:
5ab? 0 —3ab? 0 ab? 0
0 2ab? 2a2b —2ab? —2a?%b 0
_mE —3ab® 2a%b  5ab® + 2a3 —2a%b ab® — 2a® 0 (21)
T 6ab | 0  —2ab*>  —2a%b  2a(2a%+b?) 2a%b —4a®
ab®>  —2a%b  ab® — 2a® 2a%b a(2a® + b?) 0
0 0 0 —4a® 0 4a®
Question 2. Adding all even rows results in:
ZKQ,J [1 010 1 0 (22)
0dd rows add up to:
ZKQMJ_ 0000 0 0 (23)

Unlike in assignment 3, not both combmatlons equal to zero. This is due to symmetry. The vanishing of even
rows means that forces on the Z axis must be balanced. On the r axis, however, forces need not be balanced.
Since it is perpedicular to the axis of symmetry, any load in the radial direction compensates itself on the
opposite side of Q3, even if it appears unbalanced in Q2.

Question 3. In order to compute the concentrated nodal forces we’ll use its expression and simplify it:

fé= 1| N 2)Tbav 24)
Q3
=27 [ N(r,2)Tbrds (25)
02
= 27N (1, z.) T bre (26)
Where N is:
[N, 0 N, 0 N3 0
N‘[o Ni 0 N 0 Ny (27)
This results in: )
2
fe:_“;bg[o 1010 1" (28)
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A Appendix

A.1 Matlab code

This code solves most of assignment 4.2.

A% Symbolic variables

a = sym('a', 'positive');
b = sym('b', 'positive');
E = sym('E', 'positive');
g = sym('g','real');

r = 2/3%a;
z = b/3;
S = axb/2;

4% Symbolic matrices

B = Oxsym('B', [4,6]);
C = Oxsym('C',[4,4]);
N = O*sym('N',[2,6]);

bf = Oxsym('bf',[2,1]); 7 Force wector

4% Filling matrices

bf = [0; -gl;
N_1 = 1-r/a;
N_2 = r/a - z/b;
N_3 = z/b;
N=[N_1 ON2 O0N.3 O0;
ON_1 ON2 0 N_3];
B=[ -1/a 0 1/a 0
0 0 0 -1/b
N_1/r 0 N_2/r 0
0 -1/a -1/b 1/a
C=Ex*x[1000;
010 0;
001 0;
000 1/2];

4% Stiffness Matriz
K = B'*C*B * 2*pix*r * S;
K = simplify(K);

disp('K = ');
disp(K);

N_3/r
1/b
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A% Force wvector

f = N'*bf * 2%pix*r * S;

disp('f = ');
disp(£);

4% Stiffness Matriz's row sums

disp('0dd rows:')
sum = zeros(1,6);
for i=[1,3,5]

sum = sum + K(i,:);

end
disp(simplify(sum))

disp('Even rows:');
sum = zeros(1,6);
for i=[2,4,6]

sum = sum + K(i,:);

end
disp(simplify(sum))
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