Universitat Politècnica de Catalunya
Numerical Methods in Engineering Computational Solid Mechanics and Dynamics

Isoparametric Representation Structures of Revolution

Assignment 4

Eduard Gómez
March 9, 2020

Contents

1 Assignment 4.1 1
1.1 Statement 1
1.2 Solution 1
2 Assignment 4.2 3
2.1 Statement 3
2.2 Solution 3
A Appendix 5
A. 1 Matlab code 5

1 Assignment 4.1

1.1 Statement

A 3-node straight bar element is defined by 3 nodes: 1,2 and 3 with axial coordinates x_{1}, x_{2} and x_{3} respectively as illustrated in figure below. The element has axial rigidity EA, and length $l=x 1-x 2$. The axial displacement is $u(x)$. The 3 degrees of freedom are the axial node displacement u_{1}, u_{2} and u_{3}. The isoparametric definition of the element is

$$
\left[\begin{array}{l}
1 \tag{1}\\
x \\
u
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{l}
N_{1}^{e} \\
N_{2}^{e} \\
N_{3}^{e}
\end{array}\right]
$$

in which $N_{1}^{e} 1(\xi)$ are the shape functions of a three bar element. Node 3 lies between 1 and 2 but is not necessarily at the midpoint $x=l / 2$. For convenience define,

$$
\begin{equation*}
x_{1}=0 \quad x_{2}=l \quad x_{3}=\left(\frac{1}{2}+\alpha\right) l \tag{2}
\end{equation*}
$$

where $-0.5<\alpha<0.5$ characterizes the location of node 3 with respect to the element center. If $\alpha=0$ node 3 is located at the midpoint between 1 and 2 .

Question 1. From equation 3 and the second equation of 1 get the Jacobian $J=d x / d \xi$ in terms of l, α and ξ. Show that,

- if $1 / 4<\alpha<1 / 4$ then $J>0$ over the whole element $-1<\xi<1$
- if $\alpha=0, J=1 / 2$ is a constant over the element.

Question 2. Obtain the 1 x 3 strain displacement matrix \boldsymbol{B} relating $e=d u / d x=B u^{e}$ where u^{e} is the column 3 -vector of the node displacement u_{1}, u_{2} and u_{3}. The entries of \boldsymbol{B} are functions of l, α and ξ.

1.2 Solution

Question 1 We will start by defining the isoparamentric element:

$$
\begin{equation*}
\xi_{1}=0 \quad \xi_{2}=1 \quad \xi_{3}=\frac{1}{2}+\alpha \tag{3}
\end{equation*}
$$

The transformation must follow:

$$
\begin{equation*}
x=A \xi^{2}+B \xi+C \tag{4}
\end{equation*}
$$

Then we have the following system of equations:

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \tag{5}\\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{c}
0 \\
(1 / 2+\alpha) l \\
l
\end{array}\right]
$$

Solving and substituting yields:

$$
\begin{equation*}
x=\left(-2 \alpha \xi^{2}+\xi+1+2 \alpha\right) \frac{l}{2} \tag{6}
\end{equation*}
$$

Obtaining the jacobian becomes very simple:

$$
\begin{equation*}
J=\frac{d x}{d \xi}=\frac{l}{2}(1-4 \alpha \xi) \tag{7}
\end{equation*}
$$

We must now proof that $J>0$ in $\alpha \in\left(-\frac{1}{4}, \frac{1}{4}\right)$. It is a linear equation so checking that the limits are positive (non-strictly, since its an open interval) is sufficient. More formaly:

$$
\begin{equation*}
J(\alpha)>0, \quad \alpha \in\left(\alpha_{0}, \alpha_{1}\right) \Longleftrightarrow J\left(\alpha_{0}\right), J\left(\alpha_{1}\right) \geq 0 \tag{8}
\end{equation*}
$$

where α_{0} and α_{1} are $\pm \frac{1}{4}$ respectively. Evaluating at this limits yields:

$$
\begin{align*}
& \left.J\right|_{\alpha=-\frac{1}{4}}=\frac{l}{2}(1+\xi) \tag{9}\\
& \left.J\right|_{\alpha=+\frac{1}{4}}=\frac{l}{2}(1-\xi)
\end{align*}
$$

Since $\xi \in[-1,+1]$, we can check that both previous expressions are 0 in the worst case, positive in all others. As said before, the inequality needs not be strict so we have confirmed that $J>0$.

Moving on to the following assertion, it says that for $\alpha=0, \mathrm{~J}$ is half the length in all domain. Let's start by substituting in equation 7:

$$
\begin{equation*}
J=\frac{l}{2}(1-4 \alpha \xi)=\frac{l}{2} \tag{10}
\end{equation*}
$$

Question 2. We must first define our shape functions:

$$
\left.\begin{array}{l}
N_{1}(\xi)=-\frac{1}{2} \xi(1-\xi) \tag{11}\\
N_{2}(\xi)=+\frac{1}{2} \xi(1-\xi) \\
N_{3}(\xi)=1-\xi^{2}
\end{array}\right\}
$$

Let's now compute their derivatives:

$$
\left.\begin{array}{l}
\frac{d N_{1}}{d \xi}=\xi-\frac{1}{2} \tag{12}\\
\frac{d N_{2}}{d \xi}=\frac{1}{2}-\xi \\
\frac{d N_{3}}{d \xi}=-2 \xi
\end{array}\right\}
$$

We only need the inverse of the jacobian. Recalling equation 7 we have that:

$$
\begin{equation*}
J^{-1}=\frac{2}{l(1-4 \alpha \xi)} \tag{13}
\end{equation*}
$$

Then matrix B is:

$$
\boldsymbol{B}=\frac{2}{l(1-4 \alpha \xi)}\left[\begin{array}{c}
\xi-\frac{1}{2} \tag{14}\\
\frac{1}{2}-\xi \\
-2 \xi
\end{array}\right]^{T}
$$

2 Assignment 4.2

2.1 Statement

Question 1. Compute the entries of \boldsymbol{K}^{e} for the following axisymmetric triangle:

$$
\begin{array}{lll}
r_{1}=0 & r_{2}=a & r_{3}=a \\
z_{1}=0 & z_{2}=0 & z_{3}=b
\end{array}
$$

The material is isotropic with $\nu=0$ for which the stress-strain matrix is,

$$
\boldsymbol{E}=E\left[\begin{array}{llll}
1 & 0 & 0 & 0 \tag{15}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

Question 2. Show that the sum of the rows (and columns) 2, 4 and 6 of K^{e} must vanish and explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.

Question 3. Compute the consistent force vector \boldsymbol{f}^{e} for gravity forces $b=[0,-g]^{T}$.

2.2 Solution

Question 1. To compute the stiffness matrix we'll use the following expression:

$$
\begin{equation*}
\boldsymbol{K}^{e}=\int_{\Omega^{3}} \boldsymbol{B}^{T} \boldsymbol{E} \boldsymbol{B} d V=2 \pi \int_{\Omega^{2}} \boldsymbol{B}^{T} \boldsymbol{E} \boldsymbol{B} r d S \tag{16}
\end{equation*}
$$

where Ω^{3} is the whole 3D domain and Ω^{2} is the 2D cross-sectional simplified domain. In order to obtain \boldsymbol{B} we must first define the shape functions:

$$
\left.\begin{array}{l}
N_{1}(r, z)=1-\frac{r}{a} \tag{17}\\
N_{2}(r, z)=\frac{r}{a}-\frac{z}{b} \\
N_{3}(r, z)=\frac{z}{b}
\end{array}\right\}
$$

Now we can obtain matrix B according to its definition:

$$
\boldsymbol{B}=\left[\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \boldsymbol{B}_{3}\right] \quad \text { where } \quad \boldsymbol{B}_{i}=\left[\begin{array}{cc}
\frac{d N_{i}}{d r} & 0 \tag{18}\\
0 & \frac{d N_{i}}{d z} \\
\frac{N_{i}}{r} & 0 \\
\frac{d N_{i}}{d z} & \frac{d N_{i}}{d r}
\end{array}\right]
$$

It can be seen that it is a function of r and z. To avoid over-complicating the integral in equation 17 we can approximate it by evaluating it at the barycenter $r_{c}=\frac{1}{3}[2 a, b]$. This yields:

$$
\boldsymbol{B}=\left[\begin{array}{cc|cc|cc}
-\frac{1}{a} & 0 & \frac{1}{a} & 0 & 0 & 0 \tag{19}\\
0 & 0 & 0 & -\frac{1}{b} & 0 & \frac{1}{b} \\
\frac{1}{2 a} & 0 & \frac{1}{2 a} & 0 & \frac{1}{2 a} & 0 \\
0 & -\frac{1}{a} & -\frac{1}{b} & \frac{1}{a} & \frac{1}{b} & 0
\end{array}\right]
$$

We can now transform equation 17:

$$
\begin{equation*}
\boldsymbol{K}^{e}=2 \pi \int_{\Omega^{2}} \boldsymbol{B}^{T} \boldsymbol{E} \boldsymbol{B} r d S=2 \pi \boldsymbol{B}^{T} \boldsymbol{E} \boldsymbol{B} r_{c} S \tag{20}
\end{equation*}
$$

Evaluating this becomes:

$$
\boldsymbol{K}=\frac{\pi E}{6 a b}\left[\begin{array}{cccccc}
5 a b^{2} & 0 & -3 a b^{2} & 0 & a b^{2} & 0 \tag{21}\\
0 & 2 a b^{2} & 2 a^{2} b & -2 a b^{2} & -2 a^{2} b & 0 \\
-3 a b^{2} & 2 a^{2} b & 5 a b^{2}+2 a^{3} & -2 a^{2} b & a b^{2}-2 a^{3} & 0 \\
0 & -2 a b^{2} & -2 a^{2} b & 2 a\left(2 a^{2}+b^{2}\right) & 2 a^{2} b & -4 a^{3} \\
a b^{2} & -2 a^{2} b & a b^{2}-2 a^{3} & 2 a^{2} b & a\left(2 a^{2}+b^{2}\right) & 0 \\
0 & 0 & 0 & -4 a^{3} & 0 & 4 a^{3}
\end{array}\right]
$$

Question 2. Adding all even rows results in:

$$
\sum_{i=1}^{3} \boldsymbol{K}_{2 i, j}^{e}=\frac{\pi E b}{2}\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \tag{22}
\end{array}\right]
$$

Odd rows add up to:

$$
\sum_{i=1}^{3} \boldsymbol{K}_{2 i+1, j}^{e}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \tag{23}
\end{array}\right]
$$

Unlike in assignment 3, not both combinations equal to zero. This is due to symmetry. The vanishing of even rows means that forces on the Z axis must be balanced. On the r axis, however, forces need not be balanced. Since it is perpedicular to the axis of symmetry, any load in the radial direction compensates itself on the opposite side of Ω^{3}, even if it appears unbalanced in Ω^{2}.

Question 3. In order to compute the concentrated nodal forces we'll use its expression and simplify it:

$$
\begin{align*}
\boldsymbol{f}^{e} & =\int_{\Omega^{3}} \boldsymbol{N}(r, z)^{T} \boldsymbol{b} d V \tag{24}\\
& =2 \pi \int_{\Omega^{2}} \boldsymbol{N}(r, z)^{T} \boldsymbol{b} r d S \tag{25}\\
& =2 \pi \boldsymbol{N}\left(r_{c}, z_{c}\right)^{T} \boldsymbol{b} r_{c} \tag{26}
\end{align*}
$$

Where N is:

$$
\boldsymbol{N}=\left[\begin{array}{cccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 \tag{27}\\
0 & N_{1} & 0 & N_{2} & 0 & N_{3}
\end{array}\right]
$$

This results in:

$$
\boldsymbol{f}^{e}=-\frac{2 \pi a^{2} b g}{9}\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 1 \tag{28}
\end{array}\right]^{T}
$$

A Appendix

A. 1 Matlab code

This code solves most of assignment 4.2.

```
%% Symbolic variables
a = sym('a','positive');
b = sym('b','positive');
E = sym('E','positive');
g = sym('g','real');
r = 2/3*a;
z = b/3;
S = a*b/2;
%% Symbolic matrices
B = 0*sym('B',[4,6]);
C = 0*sym('C',[4,4]);
N = 0*sym('N',[2,6]);
bf = 0*sym('bf',[2,1]); % Force vector
%% Filling matrices
bf = [0; -g];
N_1 = 1-r/a;
N_2 = r/a - z/b;
N_3 = z/b;
N = [N_1 0 N_2 0 N_3 0;
            0 N_1 0 N_2 0 N_3];
B = [ [rrrrrer
C = E * [ 1 0 0 0;
    0 1 0 0;
    0 0 1 0;
    O O 0 1/2];
%% Stiffness Matrix
K = B'*C*B * 2*pi*r * S;
K = simplify(K);
disp('K = ');
disp(K);
```

```
%% Force vector
f = N'*bf * 2*pi*r * S;
disp('f = ');
disp(f);
%% Stiffness Matrix's row sums
disp('Odd rows:')
sum = zeros(1,6);
for i=[1,3,5]
    sum = sum + K(i,:);
end
disp(simplify(sum))
disp('Even rows:');
sum = zeros(1,6);
for i=[2,4,6]
        sum = sum + K(i,:);
end
disp(simplify(sum))
```

