Assignment 4
4.1.1 Compute the entries of K^{e} for the following axisymmetric triangle:

$$
r_{1}=0, r_{2}=r_{3}=a, z_{1}=z_{2}=0, z_{3}=b
$$

The material is isotropic with $\nu=0$ for which the stress-strain matrix is,

$$
E=E\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 / 2
\end{array}\right]
$$

The element stiffness matrix is given by the:

$$
\begin{align*}
K^{e} & =2 \pi \int_{A} r B^{T} E B d A \tag{2}\\
B_{i} & =\frac{1}{2 A^{e}}\left[\begin{array}{cc}
\frac{\delta N_{i}}{\delta r} & 0 \\
0 & \frac{\delta N_{i}}{\delta z} \\
\frac{N_{i}}{r} & 0 \\
\frac{\delta N_{i}}{\delta z} & \frac{\delta N_{i}}{\delta r}
\end{array}\right] \tag{3}
\end{align*}
$$

The shape functions of the axisymmetric triangle are defined as:

$$
\begin{equation*}
N_{i}=\frac{1}{2 A^{e}}\left(a_{i}+b_{i} r+c_{i} z\right) \tag{4}
\end{equation*}
$$

where:
$a_{i}=r_{j} z_{k}-r_{k} z_{j}$
$b_{i}=r_{j} z_{k}-r_{k} z_{j}$
$b_{i}=r_{j} z_{k}-r_{k} z_{j}$
In our case:

Nodes	r	z	a_{i}	b_{i}	c_{i}
1	0	0	ab	-b	0
2	a	0	0	b	-a
3	a	b	0	0	a

Thus,

$$
\begin{align*}
N_{1}=\frac{1}{2 A}(a b-b r) & =1-\frac{r}{a} \tag{5}\\
N_{2}=\frac{1}{2 A}(b r-a z) & =\frac{r}{a}-\frac{z}{b} \tag{6}\\
N_{3}=\frac{1}{2 A}(a z) & =\frac{z}{b} \tag{7}
\end{align*}
$$

Taking into account that $A=\frac{a b}{2}$ the matrix B is:

$$
B_{i}=\left[\begin{array}{cc|cc|cc}
\frac{-1}{a} & 0 & \frac{1}{a} & 0 & 0 & 0 \tag{8}\\
0 & 0 & 0 & \frac{-1}{b} & 0 & \frac{1}{b} \\
\frac{a-r}{a r} & 0 & \frac{b r-a z}{a b r} & 0 & \frac{z}{b r} & 0 \\
0 & \frac{-1}{a} & \frac{-1}{b} & \frac{1}{a} & \frac{1}{b} & 0
\end{array}\right]
$$

Thus, the stiffness matrix is:
$K^{e}=\int_{A} 2 \pi E\left[\begin{array}{cccccc}\frac{-2}{a}+\frac{2 r}{a^{2}}+\frac{1}{r} & 0 & \frac{z}{a b}+\frac{1}{a}-\frac{2 r}{a^{2}}-\frac{z}{b r} & 0 & \frac{z}{b r}-\frac{z}{a b} & 0 \\ 0 & \frac{r}{2 a^{2}} & \frac{r}{2 a b} & -\frac{r}{2 a^{2}} & -\frac{r}{2 a b} & 0 \\ \frac{z}{a b}+\frac{1}{a}-\frac{2 r}{a^{2}}-\frac{z}{b r} & \frac{r}{2 a b} & -\frac{2 z}{a b}+\frac{2 r}{a^{2}}+\frac{r}{2 b^{2}}+\frac{z^{2}}{r b^{2}} & -\frac{r}{2 a b} & \frac{z}{a b}-\frac{r}{2 b^{2}}-\frac{z^{2}}{r b^{2}} & 0 \\ 0 & -\frac{r}{2 a^{2}} & -\frac{r}{2 a b} & \frac{r}{2 a^{2}}+\frac{r}{b^{2}} & \frac{r}{2 a b} & -\frac{r}{b^{2}} \\ \frac{z}{b r}-\frac{z}{a b} & -\frac{r}{2 a b} & \frac{z}{a b}-\frac{r}{2 b^{2}}-\frac{z^{2}}{r b^{2}} & \frac{r}{2 a b} & \frac{r}{2 b^{2}}+\frac{z^{2}}{r b^{2}} & 0 \\ 0 & 0 & 0 & -\frac{r}{b^{2}} & 0 & \frac{r}{b^{2}}\end{array}\right] d A$
To integrate the stiffness matrix, numerical integration will be performed by means of Gauss quadratures. First, it is necessary to transform the area integral into two integrals with normalized limits.

The following transformation is necessary:

$$
\left[\begin{array}{l}
N_{1} \tag{9}\\
N_{2} \\
N_{3}
\end{array}\right]=\left[\begin{array}{c}
\xi \\
\eta \\
1-\xi-\eta
\end{array}\right]
$$

The linear approximation is:

$$
\begin{align*}
& r=N_{1} r_{1}+N_{2} r_{2}+N_{3} r_{3} \tag{10}\\
& z=N_{1} z_{1}+N_{2} z_{2}+N_{3} z_{3} \tag{11}
\end{align*}
$$

Thus,

$$
\begin{align*}
& r=\left(r_{1}-r_{3}\right) \xi+\left(r_{2}-r_{3}\right)_{\eta}+r_{3} \tag{12}\\
& z=\left(z_{1}-z_{3}\right) \xi+\left(z_{2}-z_{3}\right)_{\eta}+z_{3} \tag{13}
\end{align*}
$$

The Jacobian is:

$$
\left[\begin{array}{ll}
\frac{\delta r}{\delta \xi} & \frac{\delta z}{\delta \xi} \tag{14}\\
\frac{\delta r}{\delta \eta} & \frac{\delta z}{\delta \eta}
\end{array}\right]=\left[\begin{array}{cc}
-a & -b \\
0 & -b
\end{array}\right]
$$

It is used one Gauss' point located in $r=\frac{2 a}{3}$ and $z=\frac{b}{3}$.
Finally, neglecting the 2π parameter:

$$
K^{e}=E\left[\begin{array}{cccccc}
\frac{5 b}{6} & 0 & -\frac{b}{2} & 0 & \frac{b}{6} & 0 \tag{15}\\
0 & \frac{b}{3} & \frac{a}{3} & -\frac{b}{3} & -\frac{a}{3} & 0 \\
-\frac{b}{2} & \frac{a}{3} & \frac{a^{2}}{3 b}+\frac{5 b}{6} & -\frac{a}{3} & \frac{b}{6}-\frac{a^{2}}{3 b} & 0 \\
0 & -\frac{b}{3} & -\frac{a}{3} & \frac{2 a^{2}}{3 b}+\frac{b}{3} & \frac{a}{3} & -\frac{2 a^{2}}{3 b} \\
\frac{b}{6} & -\frac{a}{3} & \frac{b}{6}-\frac{a^{2}}{3 b} & \frac{a}{3} & \frac{a^{2}}{3 b}+\frac{b}{6} & 0 \\
0 & 0 & 0 & -\frac{2 a^{2}}{3 b} & 0 & \frac{2 a^{2}}{3 b}
\end{array}\right]
$$

4.1.2 Show that the sum of the rows (and columns) 2,4 and 6 of K^{e} must vanish and explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.

The sum of the rows (and columns) 2, 4 and 6 is equal to zero.

This nodes are free to move and due to this the rigidity of those degrees of freedom are equal to zero, allowing to have motion.

The sum of rows (and columns) 1, 3 and 5 is equal to b.
The nodes are not allowed to move completely free through this direction due to the rigidity imposed.
4.1.3 Compute the consistent force vector f^{e} for gravity forces $b=[0, g]^{T}$.

The force vector is defined by the following equation:

$$
\begin{equation*}
f_{b}=\int_{A} r N b d A \tag{16}
\end{equation*}
$$

Now, substituting the shape functions:

$$
f_{b}=\int_{A}-g\left[\begin{array}{c}
0 \tag{17}\\
r-\frac{r^{2}}{a} \\
0 \\
\frac{r^{2}}{a}-\frac{z r}{b} \\
0 \\
\frac{z r}{b}
\end{array}\right] d A
$$

Integrating as in the stiffness matrix:

$$
f_{b}=-g\left[\begin{array}{c}
0 \tag{18}\\
\frac{a^{2} b}{9} \\
0 \\
\frac{a^{2} b}{9} \\
0 \\
\frac{a^{2} b}{9}
\end{array}\right] d A
$$

4.2 A five node quadrilateral element has the nodal configuration shown in the

 figure. Perspective views of N_{1}^{e} and N_{5}^{e} are shown in the same figure. Find five shape functions $N_{i}^{e}, \mathrm{i}=1,5$ that satisfy compatibility and also verify that their sum is unity.

$$
N_{5}(\xi, \eta)=C_{5} L_{1-2} L_{2-3} L_{3-4} L_{4-1}
$$

For sides $1-2,2-3,3-4$ and $4-1$ the values can be $\xi=-1$ or $\xi=1, \eta=-1$ or $\eta=1, \xi=1$ or $\xi=-1$ and $\eta=1$ or $\eta=-1$, respectively. Replacing in the previous expression:

$$
\begin{gathered}
N_{5}(\xi, \eta)=c_{5}(1+\eta)(1-\xi)(1-\eta)(1+\xi) \\
\left.N_{5}\right|_{\text {at node } 5}=1=c_{5}(1+0)(1-0)(1-0)(1+0)=1 \rightarrow c_{5}=1
\end{gathered}
$$

Thus,

$$
\begin{equation*}
N_{5}(\xi, \eta)=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \tag{19}
\end{equation*}
$$

The remaining shape functions will be:

$$
N_{i}=\overline{N_{i}}+\alpha N_{5}
$$

For node 1:

$$
N_{1}=\overline{N_{1}}+\alpha N_{5}=\frac{1}{4}(1-\xi)(1-\eta)+\alpha\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)
$$

$\eta=\xi=0$ at node $5:$

$$
\frac{1}{4}(1-0)(1-0)+\alpha\left(1-0^{2}\right)\left(1-0^{2}\right)=0 \rightarrow \alpha=-\frac{1}{4}
$$

which will be the same for all N_{i}. Thus,

$$
\begin{equation*}
N_{1}=\frac{1}{4}(1-\xi)(1-\eta)-\frac{1}{4}\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \tag{20}
\end{equation*}
$$

For node 2:

$$
\begin{aligned}
N_{2} & =N_{2}-\frac{1}{4} N_{5} \\
& =\frac{1}{4}(1+\xi)(1-\eta)-\frac{1}{4}\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \\
& =\frac{1}{4}(1+\xi)(1-\eta)[1-(1-\xi)(1+\eta)]
\end{aligned}
$$

$$
\begin{equation*}
N_{2}=\frac{1}{4}(1+\xi)(1-\eta)(\xi-\eta+\xi \eta) \tag{21}
\end{equation*}
$$

For node 3:

$$
\begin{align*}
N_{3} & =N_{3}-\frac{1}{4} N_{5} \\
& =\frac{1}{4}(1+\xi)(1+\eta)-\frac{1}{4}\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \\
& =\frac{1}{4}(1+\xi)(1+\eta)[1-(1-\xi)(1-\eta)] \\
& N_{3}=\frac{1}{4}(1+\xi)(1+\eta)(\xi+\eta-\xi \eta) \tag{22}
\end{align*}
$$

For node 4:

$$
\begin{align*}
N_{4} & =N_{4}-\frac{1}{4} N_{5} \\
& =\frac{1}{4}(1-\xi)(1+\eta)-\frac{1}{4}\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \\
& =\frac{1}{4}(1-\xi)(1+\eta)[1-(1+\xi)(1-\eta)] \\
& N_{4}=\frac{1}{4}(1-\xi)(1+\eta)(-\xi+\eta+\xi \eta) \tag{23}
\end{align*}
$$

These four corner shape functions vary linearly over all sides because the bubble function N_{5} vanishes over the 4 sides. Hence interelement continuity is maintained. Unit sum check: $N_{1}+N_{2}+N_{3}+N_{4}+N_{5}=\overline{N_{1}}+\overline{N_{2}}+\overline{N_{3}}+\overline{N_{4}}-4 \cdot 1 / 4 N_{5}+N_{5}=\overline{N_{1}}+\overline{N_{2}}+\overline{N_{3}}+\overline{N_{4}}=1$, since it is known that the shape functions $\overline{N_{i}}$ of the 4-node quad add up to one.

