UNIVERSITAT POLITECNICA :* *** Erasmus
DE CATALUNYA Mundus

BARCELONATECH

UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA

MSc. COMPUTATIONAL MECHANICS ERASMUS MUNDUS

ASSIGNMENT 4: STRUCTURES OF REVOLUTION

Computational Structural Mechanics
& Dynamics

Author:
Nikhil Dave

Date: March 4, 2018
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Assignment 4.1

On “Structures of revolution”:

1. Compute the entries of K* for the following axisymmetric triangle:

7’1:0, ry =7r3 =4da, 21222:0, Z3:b

The material is isotropic with v = 0 for which the stress-strain matrix is,

oS O = O
S = O O

1
0
E=E |o
0
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Solution: The stiffness matrix for an axisymmetric element is given by,
K¢ = J B°TEB°r dQ (1)

where, the factor 27 is neglected for this problem and the B¢ matrix is given as,

i O_
or 5
0 R
e _ 0z N1 0 N2 0 N3 0
B"=DN =11 0[0 N, 0 N, 0 N,
"
9 9
[ dz  Or
We get,
[dN; oN, JdNj; T
o 0 o Vo 0
JdN; N, JdN;
o =L o 22 o Z3
B =| y Jz N dz N Jz (2)
L 0 = 0o = 0
r r r
dN; JN; JN, OJN, JN; 0N;
| 0z or Jz or 0z or |

Therefore, to evaluate B® in the above equation (2), first we need the shape functions
and their derivatives in the global coordinates r, z although they are defined in the
reference/local coordinates &, 1. The shape functions for an iso-parametric triangle
are given as,

N; =¢, N2=77; N3:1—5—7”]
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Using the properties of shape functions,

3 3
r=) N, z=) zN; and Nj+N;+N3=1

i i
we find the shape functions in global coordinates as,

Ny=1-L Ny=L-2%2 and N;=2 (3)
a a b b

Now, the derivatives of the shape functions in reference coordinates are given as,

ON; 9N, _ ON;
Y_l, Y =0, 9% 1
Ny _ 9Ny 9Ny _

o Y T Ty oy

So, we use the Jacobian matrix for the transformation of coordinate system,

. , _
dr 0z oN; dN;

- — r; Zi——
]_8585_1235 —~ 9| [-a b
e %‘i N, NN | L0

Mol |\ LGy L5y

The derivatives of the shape functions with respect to the global coordinates are
computed using the inverse of Jacobian matrix as,

8NZ- aI\ri
Or || 9%
aNi - aNi
0z o

where, the inverse is calculated as,

-1 1
a_|a a
J = , -
b

Thus, for Ny, N, and N3, we get the derivatives as,

aNl -1 1 -1

ar|_ @ ||l |e »
% ) 0 -t 0 . 0 @
dz b
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Finally, using the values derived in equations (3),(4.1), (4.2) and (4.3), we evaluate
the B¢ matrix as,

-1 1
— 0 — 0O 0 O
a a
-1 1
0 0 0 — 0 -
. b b
B*= (1 1) (1 z) N ()
roa a rb rb
0 -1 -1 1 1 0
a b a b
Next, before computing the integral to find K¢, we find,
-1 1 1
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a roa
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Now, we solve the integral as in the equation (1) for evaluation of elemental stiffness
matrix. It is interesting to note that integral of a few terms in the above matrix is
undefined since natural logarithm function In(x) is defined only for x > 0. There-
fore, for the integral terms containing 1/r, we will have to use one of the Gaussian
quadrature rules. In this case we use the centroid rule (1 point, degree 1) to get an
approximate solution which is given as,

1 11
— F (N{,N,,N dQ%F(—,—,
AJB (N1,N3,N3) 33

W =

where A = %

In order to implement this, we use the relations shown in equation (3) to substitute
r =a(N, + N3) and z = bN; in each term of the matrix shown above in equation (6).

Finally, the derived elemental stiffness matrix from

Ke—@F(l 1 1)

2 3"3°3
is given as,

>, L 0 L 0
6a 2a 6a
0 1 1 -1 -1 0

3a 3b 3a 3b
-1 1 5 a -1 1 a 0

. Eab|2a 3b (6a+ 3b2) 3b (6a 3b2)
K==, - -1 2a 1 1 24 7)

3a 3b (3b2 " 3a) 3b 302
1 -1 1 a 1 1 a
Lale) b ()
6a 3b \6a 30b2 3b 6a 3b?

—2a 2a

0 0 0 7 0 ol
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2. Show that the sum of the rows (and columns) 2, 4 and 6 of K¢ must vanish and
explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does not
vanish, and explain why.

Solution: Considering the terms of K¢ obtained in equation (7), we find the sum of
rows (and columns) 2, 4 and 6 and it is clearly observed that,

6 6 6
Y kaj=) kij=) kej=0
j=1 j=1 j=1

On the other hand, the sum of rows (and columns) 1, 3 and 5 is not equal to zero,

i.e.
ikljio, ik3]'¢0, ik5]¢0
j=1 j=1 j=1

ikil =0, ikls =0, ikiS =0
io1 io1 io1

It is important to note that we chose to define the displacement vector u° as,

Therefore, the rows (and columns) 1, 3 and 5 correspond to the radial displacement
components and rows (and columns) 2, 4 and 6 correspond to the vertical displace-
ment components. The sum of rows (and columns) of the stiffness matrix correlate
to the ability of generating rigid body motion in that direction, but due to the concept
of hoop strain in structures of revolution, the sum of rows (and columns) related to
radial displacement i.e. 1, 3 and 5 does not disappear whereas the possibility of
generating rigid body motion in the vertical displacement direction makes the sum
of row (and column) 2, 4 and 6 disappear in the stiffness matrix as shown above.
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3. Compute the consistent force vector f¢ for gravity forces b = [0, —g]T.

Solution: The consistent nodal force vector for body load is given as,

fe= ., NTbrdQ (8)
where the factor 27 is neglected with b and N7 given as,
N, 0]
0 N
SRR
N; 0
| 0 N3j
Also, from equation (3), we know that,
r=a (N, + N3)
Using these in equation (8), we get,
N, 0] 0
0 N —g N1 a(Ny + N3)
N 017, 0
fé= J Jo l_g] a(N, + N3) dQ = j =g Ny a(N, + Ny dQ
N; 0 0
0 N; —8§ N3 a(Ny + N3)

Noting that the degree of polynomial in the integrand is 2, in this case we use the
midpoint Gaussian quadrature rule (3 points degree 2) given as,

1 111\ 1. 11y 1 /1 1
—| FN NN sz—F(—,—,O) —F(O,—,—) —F(—,O,—)
Afe (N1, N2, N3) 3 \22°) 3 ) T3\

Hence, the consistent force vector f° is given as,
0
—a’bg
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0
fe=|-a’bg ©))
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