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CSMD - Assignment 4: Structures of revolution Nikhil Dave

Assignment 4.1

On “Structures of revolution”:

1. Compute the entries of Ke for the following axisymmetric triangle:

r1 = 0, r2 = r3 = a, z1 = z2 = 0, z3 = b

The material is isotropic with ν = 0 for which the stress-strain matrix is,

E = E


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
1
2


Solution: The stiffness matrix for an axisymmetric element is given by,

Ke =
∫
Ωe

BeTEBer dΩ (1)

where, the factor 2π is neglected for this problem and the Be matrix is given as,

Be =DN =



∂
∂r

0

0
∂
∂z

1
r

0

∂
∂z

∂
∂r


[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]

We get,

Be =



∂N1

∂r
0

∂N2

∂r
0

∂N3

∂r
0

0
∂N1

∂z
0

∂N2

∂z
0

∂N3

∂z
N1

r
0

N2

r
0

N3

r
0

∂N1

∂z
∂N1

∂r
∂N2

∂z
∂N2

∂r
∂N3

∂z
∂N3

∂r


(2)

Therefore, to evaluate Be in the above equation (2), first we need the shape functions
and their derivatives in the global coordinates r, z although they are defined in the
reference/local coordinates ξ, η. The shape functions for an iso-parametric triangle
are given as,

N1 = ξ, N2 = η, N3 = 1− ξ − η
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Using the properties of shape functions,

r =
3∑
i

riNi , z =
3∑
i

ziNi and N1 +N2 +N3 = 1

we find the shape functions in global coordinates as,

N1 = 1− r
a
, N2 =

r
a
− z
b

and N3 =
z
b

(3)

Now, the derivatives of the shape functions in reference coordinates are given as,

∂N1

∂ξ
= 1,

∂N2

∂ξ
= 0,

∂N3

∂ξ
= −1

∂N1

∂η
= 0,

∂N2

∂η
= 1,

∂N3

∂η
= −1

So, we use the Jacobian matrix for the transformation of coordinate system,

J =


∂r
∂ξ

∂z
∂ξ

∂r
∂η

∂z
∂η

 =


3∑
i

ri
∂Ni
∂ξ

3∑
i

zi
∂Ni
∂ξ

3∑
i

ri
∂Ni
∂η

3∑
i

zi
∂Ni
∂η


=

[
−a −b
0 −b

]

The derivatives of the shape functions with respect to the global coordinates are
computed using the inverse of Jacobian matrix as,

∂Ni
∂r
∂Ni
∂z

 = J−1


∂Ni
∂ξ
∂Ni
∂η


where, the inverse is calculated as,

J−1 =


−1
a

1
a

0
−1
b


Thus, for N1, N2 and N3, we get the derivatives as,

∂N1

∂r
∂N1

∂z

 =


−1
a

1
a

0
−1
b


10

 =


−1
a

0

 (4.1)
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∂N2

∂r
∂N2

∂z

 =


−1
a

1
a

0
−1
b


01

 =


1
a

−1
b

 (4.2)


∂N3

∂r
∂N3

∂z

 =


−1
a

1
a

0
−1
b


−1−1

 =


0

1
b

 (4.3)

Finally, using the values derived in equations (3),(4.1), (4.2) and (4.3), we evaluate
the Be matrix as,

Be =



−1
a

0
1
a

0 0 0

0 0 0
−1
b

0
1
b(1

r
− 1
a

)
0

(1
a
− z
rb

)
0

z
rb

0

0
−1
a

−1
b

1
a

1
b

0


(5)

Next, before computing the integral to find Ke, we find,

rBeTEBe = r



−1
a

0
(1
r
− 1
a

)
0

0 0 0
−1
a

1
a

0
(1
a
− z
rb

) −1
b

0
−1
b

0
1
a

0 0
z
rb

1
b

0
1
b

0 0



E


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
1
2





−1
a

0
1
a

0 0 0

0 0 0
−1
b

0
1
b(1

r
− 1
a

)
0

(1
a
− z
rb

)
0

z
rb

0

0
−1
a

−1
b

1
a

1
b

0
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= E



(2r
a2

+
1
r
− 2
a

)
0

(−2r
a2

+
1
a
− z
rb

+
z
ab

)
0

( z
rb
− z
ab

)
0

0
r

2a2
r

2ab
−r
2a2

−r
2ab

0(−2r
a2

+
1
a
− z
rb

+
z
ab

) r
2ab

(2r
a2

+
r

2b2
+
z2

rb2
− 2z
ab

) −r
2ab

( z
ab
− z2

rb2
− r

2b2

)
0

0
−r
2a2

−r
2ab

( r

2a2
+
r

b2

) r
2ab

−r
b2( z

rb
− z
ab

−r
2ab

) ( z
ab
− z2

rb2
− r

2b2

) r
2ab

( z2
rb2

+
r

2b2

)
0

0 0 0
−r
b2

0
r

b2


(6)

Now, we solve the integral as in the equation (1) for evaluation of elemental stiffness
matrix. It is interesting to note that integral of a few terms in the above matrix is
undefined since natural logarithm function ln(x) is defined only for x > 0. There-
fore, for the integral terms containing 1/r, we will have to use one of the Gaussian
quadrature rules. In this case we use the centroid rule (1 point, degree 1) to get an
approximate solution which is given as,

1
A

∫
Ωe
F (N1,N2,N3) dΩ ≈ F

(1
3
,
1
3
,
1
3

)
where A =

ab
2

In order to implement this, we use the relations shown in equation (3) to substitute
r = a(N2 +N3) and z = bN3 in each term of the matrix shown above in equation (6).

Finally, the derived elemental stiffness matrix from

Ke =
ab
2
F

(1
3
,
1
3
,
1
3

)
is given as,

Ke =
Eab
2



5
6a

0
−1
2a

0
1
6a

0

0
1
3a

1
3b

−1
3a

−1
3b

0

−1
2a

1
3b

( 5
6a

+
a

3b2

) −1
3b

( 1
6a
− a

3b2

)
0

0
−1
3a

−1
3b

( 2a
3b2

+
1
3a

) 1
3b

−2a
3b2

1
6a

−1
3b

( 1
6a
− a

3b2

) 1
3b

( 1
6a

+
a

3b2

)
0

0 0 0
−2a
3b2

0
2a
3b2



(7)
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2. Show that the sum of the rows (and columns) 2, 4 and 6 of Ke must vanish and
explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does not
vanish, and explain why.

Solution: Considering the terms of Ke obtained in equation (7), we find the sum of
rows (and columns) 2, 4 and 6 and it is clearly observed that,

6∑
j=1

k2j =
6∑
j=1

k4j =
6∑
j=1

k6j = 0

6∑
i=1

ki2 =
6∑
i=1

ki4 =
6∑
i=1

ki6 = 0

On the other hand, the sum of rows (and columns) 1, 3 and 5 is not equal to zero,
i.e.

6∑
j=1

k1j , 0,
6∑
j=1

k3j , 0,
6∑
j=1

k5j , 0

6∑
i=1

ki1 , 0,
6∑
i=1

ki3 , 0,
6∑
i=1

ki5 , 0

It is important to note that we chose to define the displacement vector ue as,

ue =



ur1
uz1
ur2
uz2
ur3
uz3


Therefore, the rows (and columns) 1, 3 and 5 correspond to the radial displacement
components and rows (and columns) 2, 4 and 6 correspond to the vertical displace-
ment components. The sum of rows (and columns) of the stiffness matrix correlate
to the ability of generating rigid body motion in that direction, but due to the concept
of hoop strain in structures of revolution, the sum of rows (and columns) related to
radial displacement i.e. 1, 3 and 5 does not disappear whereas the possibility of
generating rigid body motion in the vertical displacement direction makes the sum
of row (and column) 2, 4 and 6 disappear in the stiffness matrix as shown above.
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3. Compute the consistent force vector f e for gravity forces b = [0,−g]T .

Solution: The consistent nodal force vector for body load is given as,

f e =
∫
Ωe

N T brdΩ (8)

where the factor 2π is neglected with b and N T given as,

b =
[
0
−g

]
, N T =



N1 0
0 N1
N2 0
0 N2
N3 0
0 N3


Also, from equation (3), we know that,

r = a (N2 +N3)

Using these in equation (8), we get,

f e =
∫
Ωe



N1 0

0 N1

N2 0

0 N2

N3 0

0 N3



[
0
−g

]
a(N2 +N3) dΩ =

∫
Ωe



0

−g N1 a(N2 +N3)

0

−g N2 a(N2 +N3)

0

−g N3 a(N2 +N3)


dΩ

Noting that the degree of polynomial in the integrand is 2, in this case we use the
midpoint Gaussian quadrature rule (3 points degree 2) given as,

1
A

∫
Ωe
F (N1,N2,N3) dΩ ≈

1
3
F
(1
2
,
1
2
,0

)
+
1
3
F
(
0,

1
2
,
1
2

)
+
1
3
F
(1
2
,0,

1
2

)

Hence, the consistent force vector f e is given as,

f e =



0

−a2bg
12
0

−a2bg
8
0

−a2bg
8



(9)
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