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On “Isoparametric representation”

1 Assignment 4.1

A 3-node straight bar element is defined by 3 nodes: 1, 2 and 3 with axial coordinates x1,
x9 and x3 respectively as illustrated in figure below. The element has axial rigidity EA, and
length | = x1—x9. The axial displacement is u(x). The 3 degrees of freedom are the axial
node displacement uq, us and us. The isoparametric definition of the element is

1 1 1 1 Ny
x| = |x1 w2 3| |5
Uu up ug us| | NS

in which N{(€) are the shape functions of a three bar element. Node 3 lies between 1 and 2
but is not necessarily at the midpoint x = 1/2. For convenience define,

1
x1 =0 x2:(§+oz)l x3 =1

where —% <a< % characterizes the location of node 3 with respect to the element center.
If @« = 0 node 3 is located at the midpoint between 1 and 2.

axial ngidity £4

— = X W

1(E=—1) 3(E=0)  2(E=D)
x1=0 x3=£2+08 =4
|“'_ £ =L% —"|

Figure 1: The three-node bar element in its local system
1. Get the Jacobian J = fl—’g in terms of I,  and £. Show that,
o if f% <a< }l then J > 0 over the whole element -1 < ¢ < 1.
o ifa=0,J= é is a constant over the element.
2. Obtain the 1x3 strain displacement matrix B relating e = g—z = Bu® where u° is the
column 3-vector of the node displacement uy, us and u3. The entries of B are functions
of I, & and &.

1.1 Solution

For a quadratic Lagrange element with three nodes at £ = —1, &, = 0 and £ = 1 the shape
functions are:

Ny = - 1)
Ny = (1-¢7)

Ny = 6(E +1)



Sebastian Ares de Parga R.
Assignment 4

A parametric interpolation of the element geometry yields as follows:

Substituting the shape functions and the values of x;:

v = SE(E = 1)(0) + (1 - )3 + )l + ZE(E + 1)

l
xr = —5[25204 — & —2a—1]
Where the Jacobian is defined as:

j=_ !

T 2[4504 —1]

To show that J > 0 when —%1 <a< %1 for the whole element —1 < ¢ < 1, we have that:

1€l
4

A

o €] = [e - |¢] <

<

1
. < -
o€l <

—1 1
T<Oé€<1
do- €< 1
da-—1<0
l(da- —1) <0
—l(4a-—1) >0
—£(4 —-1)>0

5 (4
J >0

If « =0, J doesn’t depend on &, therefore, it is a constant:

l l
=—-1 —1]=—=[-1
T =~ 4E(0) ~ 1] = —5[1]
l
J ==
2
The strain displacement matrix B is defined as follows:
dN dN
B=—=J1"—
dx d¢
Where:
oo 2
o l(4fa—1)

N =I[N; Ny N3]
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Ny 261

& 2

Ng__

e~ %

N3  26+1

&2

Therefore:

2 %Sl ge 2L
b= l(4§a—1)[ 2 28 2 }

B_{_ 26—1 A€ 2641 }
- [(4éa—1) 1(4éa—1) [(4éa—1)

B_wwi&ﬂ—@ﬁ—w 4€ —(26+1)]

On “Structures of revolution”

2 Assignment 4.2
1. Compute the entries of K¢ for the following axisymmetric triangle:
ri=0 ro=r3=a, 2z =2=0 23=0

The material is isotropic with ¥ = 0 for which the stress-strain matrix is,

1000
0100
E=E1g 01 0
0001

2. Show that the sum of the rows (and columns) 2, 4 and 6 of K° must vanish and explain
why. Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and
explain why.

3. Compute the consistent force vector f¢ for gravity forces b = [0,—¢|”.

2.1 Solution

The stiffness matrix can be computed according to the general relationship:
K = QW/BiTDBderdz
Since the integration over the element is algebraically complex, the numerical integration

fits better this case, evaluating all quantities for a centroidal point:

T+ 75+ Tm and 2_zi+zj+zm

3 3

In this case the stiffness matrix approximation is defined as follows:

r =

K;; = 2B/ DB;TA

4
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Where the shape functions are and its derivatives are:
0N, 1 0N,

r
Ny =1-——;: _ —— —— =0
! a’ or a’ 0z
Nl _% 0N _1 0Ny 1
270 b or a’ dz b
z 8]\73 8N3 1
Na = 2 Y. Yo
T or 0 0z b

Note: The values of "r” and ”z” will have to be substituted by # and z respectively.

Computing the centroide of the element, we get:

_ 2a _ b
r = ?, Z = g
The strain matrix is defined as follows:
N,
B; = % OZ
ON:  ON;
or or
Substituting, the following strain matrix is obtained:
—1/a 0 1/a 0 0 0
B_ 0 0 0 —1/b 0 1/b
|1/(2%xa) 0 1/(2%a) 0 1/(2%a) O
0 —1/a  —=1/b 1/a 1/b 0

Poisson ratio is considered to be 0, therefore the constitutive matrix yields:

1 000
0100
D=E 0010
000 %
The area of the element is: }
1 00 ab
1 a b
Now the stifflness matrix can be obtained:
2a ab - _
K¢ = o~ CBTDB,
J 3 2
2ma’h
ke =27 BTpR
1] 3 1 J
" 5 —3 1 T
4q? (1) 461L2 01 4a12 0
03 ? 5 2ab 1 ? 1 2ab 1 !
9 —o 1 9 L —-1 S S
K¢ — 2ma’h E | 4a? 2ab  4a? + 202 2ab 4a2  2b? 0
i 3 0 =L —1 1 + 1 1 =1
202 2a 202 ' b2 2ab b2
1 -1 1 1 1 1 i 10
402 2ab 442 202 Qa{) 402 " 2b2 .
K 0 = 0
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A first approximation if the body forces are constant is:

TA
£ = —2rb—
fi = —2mb
12a ab 2h
fe=—2mbz L = _op% 0
33 2 9
Where b, is:
2= 1)
-9
Therefore: o
0
1
a’bg |0
F=2=5"h
0
_1_

3 Discussion

The stiffness matrix and consistent force vector was obtained through a centroidal approx-
imation to avoid the complexity of the analytical integration, but it could have been done
through analytical or numerical approximation as well.

Once the stiffness matrix is obtained, it can be seen that the sum of the rows (and columns)
2, 4 and 6 vanishes, while the sum of the rows (and columns) 1,3 and 5 does not vanish. This
is because in the ”z” direction there must be a balance for each axisimetry plane, while the
balance in the ”"r” axis direction will occur with the geometric counterpart of the problem.
The gravity forces vector b, has to be multiplied by the density of the material, therefore
the consistent forces vector yields as follows:

0

1

foo a’bpg |0
= 27 9 1
0

1
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