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1- Introduction 

The goal of the assignment is to analyze the isoparametric representation of 1D 

elements and structures of revolution and apply their formulations. A discussion on both 

subjects was also considered. 

2 – Assignment 4.1 

2.1 – Part 1 

 To obtain the Jacobian of the element presented in the assignment [1], a 

relationship between the cartesian coordinate x and the natural coordinate ζ needs to be 

found. For such task, it is possible to parametrize x as a function of ζ with a second-

degree polynomial since the presented element has 3 three nodes [1]. The second-

degree polynomial is the following:  

 𝑥 =  𝛼0  +  𝛼1𝜁 + 𝛼2𝜁
2 (1) 

Considering that when x = 0 → ζ = -1, Equation 1 can be rewritten as: 

 0 =  𝛼0  +  −𝛼1  +  𝛼2 (2) 

 Considering that when x = L → ζ = 1, Equation 1 can be rewritten a 

 𝐿 =  𝛼0  +  𝛼1  +  𝛼2 (3) 

Considering that when x = L/2 + αL → ζ = 0, Equation 1 can be rewritten as 

 L/2 +  αL =  𝛼0 (4) 

Equations 2-4 build a system which can be solved for the coefficients α0, α1 and 

α2. The values of the coefficients are: 

                              𝛼0  =  L/2 +  αL, 𝛼1  =  𝐿/2,𝛼2  =  −𝐿𝛼 

Replacing the values of the coefficients in Equation 1, the parametrization of x in 

terms of ζ becomes: 

 
𝑥 =  

𝐿

2
 + 𝛼𝐿 + 

𝐿

2
𝜁 −  𝛼𝐿𝜁2 (5) 
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With Equation (5), it is possible to calculate the Jacobian J: 

 
𝐽 =  

𝑑𝑥

𝑑𝜁
 =  

𝐿

2
  −  2𝛼𝐿𝜁 (6) 

Considering the limits 1/4 < α < 1/4 with -1≤ ζ ≤ 1, Equation 6 will always be positive 

because the term 2αLζ, for any value of ζ in [-1,1], will not be greater than L/2. Hence, J 

will always be positive in this case. Considering α=0, Equation (6) takes the value of L/2 

over the whole element. 

2.1 – Part 2 

To calculate the strain matrix B, the following equation is employed: 

 
𝑩 = 𝐽−1

𝑑𝑵

𝑑𝜁
,𝑤ℎ𝑒𝑟𝑒 𝑵 = [𝑁1𝑁2𝑁3] (7) 

Ni are the shape functions in natural coordinate ζ and are defined as [2]: 

𝑁1  =  
𝜁2

2
 − 

𝜁

2
 

𝑁2  =  1 + 𝜁2 

𝑁3  =  
𝜁2

2
 + 

𝜁

2
 

Calculating J-1 and the derivatives of the shape functions Ni w.r.t ζ, the B matrix is 

defined as: 

𝑩 =  [
2𝜁 − 1

𝐿(1 − 4𝛼)
,

−4𝜁

𝐿(1 − 4𝛼)
,

1 +  2𝜁

𝐿(1 − 4𝛼)
] 

3 – Discussion on Isoparametric Representation 

 The parametrization of geometric shape functions and displacement shape 

functions is very useful when higher order displacement shape functions are considered, 

or the discretized domain requires more accurate representation. Such advantage is due 

to the simplification of the integration limits, always from -1 to 1 in such case, and the 

facilitated employment of numerical integration, such as the Gauss Quadrature, during 
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the computation of stiffness matrix and force vector. Moreover, if the same shape 

functions are applied for the displacement and the geometry, as known as isoparametric 

representation, only one set of shape functions is needed to interpolate both the geometry 

and the displacement field. Also, in 2D/3D analysis the parametrization of the geometric 

shape functions allows an evaluation of the element quality. Such study can be achieved 

through the Jacobian Matrix J, where the elements in the computational domain are 

“compared” with the reference element in the natural coordinate system. The coefficients 

in the Jacobian Matrix J can be used to measure the distortion of the elements in the 

computational domain. 

4 – Assignment 4.2 

4.1 – Part 1 

 The stiffness matrix for a 3-noded triangular element in axisymmetric case can be 

computed through the element stiffness submatrix according to the following equation [2]: 

𝑲𝑖𝑗
(𝑒)

=  =
𝜋

2𝐴(𝑒)2
∬ [

(𝐸11𝑏𝑖𝑏𝑗 + 𝐸44𝑐𝑖𝑐𝑗)𝑟 + 2𝐴(𝑒)(𝐸13𝑏𝑖𝑁𝑗 + 𝐸31𝑏𝑗𝑁𝑖) + 4𝐴(𝑒)2𝐸33

𝑁𝑖𝑁𝑗

𝑟
(𝐸12𝑏𝑖𝑐𝑗 + 𝐸44𝑐𝑖𝑏𝑗)𝑟 + 2𝐴(𝑒)𝐸32𝑐𝑗𝑁𝑖

(𝐸21𝑐𝑖𝑏𝑗 + 𝐸44𝑏𝑖𝑐𝑗)𝑟 + 2𝐴(𝑒)𝐸23𝑐𝑖𝑁𝑗 (𝐸22𝑐𝑖𝑐𝑗 + 𝐸44𝑏𝑖𝑏𝑗)𝑟
]𝑑𝑟𝑑𝑧    

𝐴(𝑒)

 (8) 

where i,j and k = 1, 2 and 3. 

 The coefficients Eij are the elements of the constitutive matrix E provided in the 

assignment [1]. The coefficients ai, bi and ci are the coefficients of the shape function Ni 

and are defined below according to the node coordinates: 

 𝑎𝑖  =  𝑥𝑗𝑦𝑘  −  𝑥𝑘𝑦𝑗, 𝑏𝑖  =  𝑦𝑗  −  𝑦𝑖 ,  𝑐𝑖  =  𝑥𝑘  −  𝑥𝑗; (9) 

 And the shape function is defined as follows: 

 
𝑁𝑖 =

1

2𝐴(𝑒)
(𝑎𝑖  +  𝑏𝑖𝑥 + 𝑐𝑖𝑦),              𝑖 =  1,2,3   (10) 

 Applying the data provided in the assignment [1] to Equation (8), the element 

stiffness K(e) takes the form: 
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𝑲(𝑒)  =  

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
4𝜋𝐸𝑏

3
0 −

𝜋𝐸𝑏

2
0

𝜋𝐸𝑏

6
0

0
𝜋𝐸𝑏

3

𝜋𝐸𝑎

3
−

𝜋𝐸𝑏

3
−

𝜋𝐸𝑎

3
0

−
𝜋𝐸𝑏

2

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
11𝐸𝑎2𝑏3

18
 + 

𝐸𝑎4𝑏

6
) −

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

18
 − 

𝐸𝑎4𝑏

6
) 0

0 −
𝜋𝐸𝑏

3
−

𝜋𝐸𝑎

3

𝜋𝐸

3
(
2𝑎2

𝑏
+ 𝑏)

𝜋𝐸𝑎

3
−

2𝜋𝐸𝑎2

3𝑏

𝜋𝐸𝑏

6
−

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

18
 − 

𝐸𝑎4𝑏

6
)

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

9
 + 

𝐸𝑎4𝑏

6
) 0

0 0 0 −
2𝜋𝐸𝑎2

3𝑏
0

2𝜋𝐸𝑎2

3𝑏 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.2 – Part 2 

 From the stiffness matrix K(e) computed in the section above, it is noticeable that 

the even columns and rows produce zero column and row vector. This is due to the 

equilibrium imposed in the z-direction among the nodes in the element and to the fact that 

the circumferential strain and stress do not depend on that coordinate. Below, the sum of 

rows 2, 4 and 6 is presented and well as the sum of the columns 2, 4 and 6: 

Sum of rows 2, 4 and 6: 

                [ 0
𝜋𝐸𝑏

3

𝜋𝐸𝑎

3
−

𝜋𝐸𝑏

3
−

𝜋𝐸𝑎

3
0] 

+ [0 −
𝜋𝐸𝑏

3
−

𝜋𝐸𝑎

3

𝜋𝐸

3
(
2𝑎2

𝑏
+ 𝑏)

𝜋𝐸𝑎

3
−

2𝜋𝐸𝑎2

3𝑏
] 

+ [0 0 0 −
2𝜋𝐸𝑎2

3𝑏
0

2𝜋𝐸𝑎2

3𝑏
] 

=  [0 0 0 0 0 0] 

Sum of columns 2, 4 and 6: 

                [ 0
𝜋𝐸𝑏

3

𝜋𝐸𝑎

3
−

𝜋𝐸𝑏

3
−

𝜋𝐸𝑎

3
0]

𝑇
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+ [0 −
𝜋𝐸𝑏

3
−

𝜋𝐸𝑎

3

𝜋𝐸

3
(
2𝑎2

𝑏
+ 𝑏)

𝜋𝐸𝑎

3
−

2𝜋𝐸𝑎2

3𝑏
]

𝑇

 

+ [0 0 0 −
2𝜋𝐸𝑎2

3𝑏
0

2𝜋𝐸𝑎2

3𝑏
]
𝑇

 

= [0 0 0 0 0 0]𝑇 

 Nevertheless, the sum of columns and rows 1, 3 and 5 do not add up to zero. This 

is due to the fact that the radial displacement is responsible for the strain and stress in 

the circumferential direction. Therefore, the non-zero values are related to the internal 

energy term in the circumferential coordinate which does not have a conjugate (external 

work done in that direction). The sum of rows and columns 1, 3 and 5 are presented below 

as to show such results: 

Sum of rows 1, 3 and 5: 

                [ 
4𝜋𝐸𝑏

3
0 −

𝜋𝐸𝑏

2
0

𝜋𝐸𝑏

6
0] 

+ [−
𝜋𝐸𝑏

2

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
11𝐸𝑎2𝑏3

18
 + 

𝐸𝑎4𝑏

6
) −

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

18
 − 

𝐸𝑎4𝑏

6
) 0] 

+ [
𝜋𝐸𝑏

6
−

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

18
 − 

𝐸𝑎4𝑏

6
)

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

9
 + 

𝐸𝑎4𝑏

6
) 0] 

=  [𝜋𝐸𝑏 0
4𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

3
 ) −

𝜋𝐸𝑏

2
 0

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

6
 ) +

𝜋𝐸𝑏

6
0] 

Sum of columns 1, 3 and 5: 

[ 
4𝜋𝐸𝑏

3
0 −

𝜋𝐸𝑏

2
0

𝜋𝐸𝑏

6
0]

𝑇

 

+ [−
𝜋𝐸𝑏

2

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
11𝐸𝑎2𝑏3

18
 + 

𝐸𝑎4𝑏

6
) −

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

18
 − 

𝐸𝑎4𝑏

6
) 0]

𝑇

 

+ [
𝜋𝐸𝑏

6
−

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

18
 − 

𝐸𝑎4𝑏

6
)

𝜋𝐸𝑎

3

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

9
 + 

𝐸𝑎4𝑏

6
) 0]

𝑇
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= [𝜋𝐸𝑏 0
4𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

3
 ) −

𝜋𝐸𝑏

2
 0

2𝜋

𝑎2𝑏2
(
𝐸𝑎2𝑏3

6
 ) +

𝜋𝐸𝑏

6
0]

𝑇

 

4.3 – Part 3 

 To compute the consistent force vector according to the data provided in the 

assignment [1], the following equation can be employed [2]: 

 

   𝒇(𝑒) =  
𝜋𝐴(𝑒)

6
 

[
 
 
 
 
 
 
(2𝑟𝑖  +  𝑟𝑗  + 𝑟𝑘)𝑏𝑟

(2𝑟𝑖  +  𝑟𝑗  +  𝑟𝑘)𝑏𝑧

(𝑟𝑖  +  2𝑟𝑗  + 𝑟𝑘)𝑏𝑟

(𝑟𝑖  +  2𝑟𝑗  +  𝑟𝑘)𝑏𝑧

(𝑟𝑖  +  𝑟𝑗  +  2𝑟𝑘)𝑏𝑟

(𝑟𝑖  +  𝑟𝑗  +  2𝑟𝑘)𝑏𝑧]
 
 
 
 
 
 

 (11) 

 Applying the data from the assignment [1] to Equation 11, the consistent force 

vector takes the following form: 

   𝒇(𝑒) = 
𝜋𝑎𝑏

12
 

[
 
 
 
 
 

0
−2𝑎𝑔

0
−3𝑎𝑔

0
−3𝑎𝑔]

 
 
 
 
 

 

5 – Discussion on Structures of Revolution 

 Structures of revolution are originally 3D structures, but since they have a 

revolution axis, they can be reduced to a 2D framework under certain conditions. Such 

conditions are the boundary conditions which must be independent of the circumferential 

coordinate and symmetric according to the revolution axis. If these conditions are met, 

the problem is greatly reduced and a 2D analysis can be performed. The simplification 

brings reduction to computational time and enables a more detailed study on mesh 

convergence under the same computational limitations. Nevertheless, it is worth 

mentioning that the formulation of stiffness matrix and force vector for elements in 

axisymmetric conditions are different from the 2D elasticity case studied in the previous 

assignment. This is due to the non-zero values of ɛθ and σθ, which arise from the 
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displacement in the radial direction. Therefore, differently from the 2D elasticity case, the 

internal energy related to the suppressed coordinate is different than zero.  
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