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Assignment 4.1

1. Compute the entries of K* for the following axisymmetric triangle:
=0, rp=r3=a z21=2,=0, z3=D

The material is isotropic with v = 0 for which the stress-strain matrix is,

1 0 0 O
01 0 O
E=E0 0 1 (1)
o o O 5

2. Show that the sum of the rows (and columns) 2, 4 and 6 of K® must vanish and
explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does not
vanish, and explain why.

3. Compute the consistent force vector f¢ for gravity forces b = [0, —g] .

Date of Assignment: 26/02/2018
Date of Submission: 5/03/2018

The assignment must be submitted as a pdf file named As4-Surname.pdf to the
CIMNE virtual center.



4.1 Compute the entries of K° for the following axisymmetric triangle

rir=0,ro=r3=a,21 =20=0,23 =0
The material is isotropic with v = 0 for which the stress-strain matrix is,

1 0 0 O
01 0 0
E=FElo 01 0
1
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The shape function for linear triangle are precisely the triangular (area) coordinates
Nle = Cl)Ng = <27N3e = 43

From (1), we get,
r= Tle + TQNze + 7”3]\73‘)2 =110 + 1202 + r3(3

But we know that r; = Oandry = r3 = a,
r=a(le+(3)
z = ZlNle + 22N2€ + Z3N36 = 21C1 + 2202 + 23(3
21222:0,2’3:CL
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Thus, we can find the shape functions as follows, z = b(3
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We know that for any element, Ny 4+ N5 + N§ =1
Nf=1- N§— N3—1—7+§f5
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The strain matrix of element is
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Calculating the partial derivatives for shape functions w.r.t r and z
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Element stiffness matrix K¢ = [,. rB°EBdQ°
But First we will calculate the term r B EB and integrate the result in next step.
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After completing all Matrix multiplication we get the following matrix
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In order to lately integrate this result using Guass rule, we need to have this matrix as a function of
the function of the area coordinates (1,2, (3. We can obtain this result by substituting r = a({1 + (3)
and z = b(3. - K= [,. rB°EBdQ° =

Please turn over
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For simplicity we can now use the centroid Guass rule (1point, degree 1) to get a suitable approximation of the K Centroid rule = 1 fQ F(¢1,(2,(3)dQY =~
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4.2 The Sum of row(column 2,4,6)

For row 2 1 1 1 1
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In the way that the vector of displacements u® was defined as

e T
u® = [up w1l U Usa Uy U3

Thus, on a linear system Ku = , rows(columns) 2,4,6 corresponds to stiffness affecting the vertical
displacements while rows (columns) 1, 3,5 affect radial displacements.
A noteworthy aspect of structures of revolution is the appearance of the "hoop" strain egg = u,/r. A
uniform radial displacement is no longer a rigid body motion. Instead, it produces a circumferential
strain.
When rows(columns) of a stiffness matrix sums to zero, it means that there is no internal energy
associated with a particular degree of freedom. Thus, the stiffness matrix is "able to reproduce" solid
rigid motions.
According to this reasoning, the columns (rows) of the matrix K° corresponding to radial displacements
should not sum to zero (because in revolution structures we have the hoop strain). On the contrary,
rows 2, 4and6 must vanish since for this structures we have one possible rigid body motion, the vertical
one.
4.3 Computing the consistent force vector f° for gravity force b = [0, —g|”
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But r = a({2 + (3), then
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And as the polynomial function to integrate is of degree 2, we need a 3 point Guass quadrature. We
can use, for instance, the midpoint rule for a straight side triangle.
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Finally it yields,
- 0 -— _0-
ga 1
6 3
0 0
fe:‘Lb _ | za’tg
= 2 | ga 4 1
4 2
0 0
_9ga 1
L 4 ] 9]




