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Assignment 3.1

Compute the entries of Ke for the following plane stress triangle:
x1 = 0, y1 = 0, x2 = 3, y2 = 1, x3 = 2, y3 = 2

E =

100 25 0
25 100 0
0 0 50

 , h = 1
(1)

Answer
In order to describe the triangular coordinates in the Cartesian ones, it is needed to make a transformation. This
transformation is done by: ζ1ζ2

ζ3

 =
1

2A

2A23 y23 x23

2A31 y31 x31

2A12 y12 x12

1
x
y

 (2)

In which xjk = xj − xk and yjk = yj − yk and the Ajk is the area subtended by corners j,k and the origin of the
system. So now the displacements field can be computed as:

[
ux
uy

]
=

[
ζ1 0 ζ2 0 ζ3 0
0 ζ1 0 ζ2 0 ζ3

]

ux1

uy1

ux2

uy2

ux3

uy3

 (3)

The shape functions in the linear triangle elements are the triangular coordinates, so the B matrix becomes:

B =
1

2A

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 (4)

The problem to be solved is Ku = f and the matrix K is defined as:

Ke =

∫
Ωe

hBTEBdΩ (5)

Considering that E and B are constant in the element, they can be extracted from the integral. For this problem,
the matrix B will be:

B =
1

4

−1 0 2 0 −1 0
0 −1 0 −2 0 3
−1 −1 −2 2 3 −1

 (6)

Considering that h is constant,
∫

Ωe hdΩ = A. The stiffness matrix is:

1
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Ke =
1

8


−1 0 −1
0 −1 −1
2 0 −2
0 −2 2
−1 0 3
0 3 −1


100 25 0

25 100 0
0 0 50

−1 0 2 0 −1 0
0 −1 0 −2 0 3
−1 −1 −2 2 3 −1

 (7)

Computing the matrix products:

K =
1

8


150 75 −100 −50 −50 −25
75 150 50 100 −125 −250
−100 50 600 −300 −500 250
−50 100 −300 600 350 −700
−50 −125 −500 350 550 −225
−25 −250 250 −700 −225 950

 (8)

The results are verified as K11 = 18, 75 and K66 = 118, 75.

Show that the sum of the rows (and columns) 1, 3 and 5 of Ke as well as the sum of rows
(and columns) 2, 4 and 6 must vanish, and explain why.

Answer
To compute this matrix, a function has been assigned in order to describe the connection between each node: the
shape functions. These functions have the values 0 in all the nodes except of the referred one in which is 1. It means
that summing the values on these rows (or columns), the results has to be zero as it is summing his relations with
the other nodes, described by the shape functions.

Assignment 3.2

Answer

a)
The stiffness matrix of the first model, the plane linear Turner triangle, can be computed as in the first part of the
assignment. So the resultant B matrix is:

B =
1

2a
2

2

−a 0 a 0 0 0
0 −a 0 0 0 a
−a −a 0 a a 0

 (9)

The matrix E is:

E =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (10)

and if ν = 0, a = h = 1 the matrix K will take the form of:

K =
E

2


−1 0 −1
0 −1 −1
1 0 0
0 0 1
0 0 1
0 1 0


1 0 0

0 1 0
0 0 1

2

−1 0 1 0 0 0
0 −1 0 0 0 1
−1 −1 0 1 1 0

 (11)

K =
E

2



3
2

1
2 −1 − 1

2 − 1
2 0

1
2

3
2 0 − 1

2 − 1
2 −1

−1 0 1 0 0 0
− 1

2 − 1
2 0 1

2
1
2 0

− 1
2 − 1

2 0 1
2

1
2 0

0 −1 0 0 0 1

 (12)
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K = E



3
4

1
4 − 1

2 − 1
4 − 1

4 0
1
4

3
4 0 − 1

4 − 1
4 − 1

2
− 1

2 0 1
2 0 0 0

− 1
4 − 1

4 0 1
4

1
4 0

− 1
4 − 1

4 0 1
4

1
4 0

0 − 1
2 0 0 0 1

2

 (13)

To compute the stiffness matrix of the second model, the previous method can’t be used, but it is needed to
work bar by bar. That’s because the section of each bar is different while in the first model the section was the same
everywhere in the triangle. Moreover the two structures are different, one is a unique structure, the second one are
three bars linked by three hinges.

For the single elements we can use, from the previous classes, the To represent the local coordinates of each
element in the global ones, it is needed to introduce a relation:

uex = uglobx c+ ugloby s

uey = −uglobx s+ ugloby c
(14)

in which c = cosα and s = sinα. Writing it in matrix formulation:
uexi
ueyi
uexj
ueyj

 =


c s 0 0
−s c 0 0
0 0 c s
0 0 −s c



uglobxi

uglobyi

uglobxj

uglobyj


The matrix multiplying represented above is the T matrix that transform the local in global coordinates. Writing
also the stiffness matrix in the global system for each element:

Kglob = (T )TKeT (15)

This will lead to a rotated stiffness matrix that allows to represent the rotated system per each element in the
reference system. This matrix is the following:

Ke =
EeAe

Le


c2 sc −c2 −sc
sc s2 −sc −s2

−c2 −sc c2 sc
−sc −s2 sc s2


Knowing that a = 1, A1 = A2 = A and A3 = A′ the elemental stiffness matrix for each element can be computed.

Element 1:

K1 = EA


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 (16)

Element 2:

K2 = EA


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 (17)

Element 3:

K3 =
EA′√

2


1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2
− 1

2
1
2

1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

 (18)

Building the matrix for the global system:
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K = E



A 0 −A 0 0 0
0 −A 0 0 0 0

−A 0 A+
√

2A′

4 −
√

2A′

4 −
√

2A′

4

√
2A′

4

0 0 −
√

2A′

4

√
2A′

4

√
2A′

4 −
√

2A′

4

0 0 −
√

2A′

4

√
2A′

4

√
2A′

4 −
√

2A′

4

0 0
√

2A′

4 −
√

2A′

4 −
√

2A′

4 A+
√

2A′

4


(19)

b)
Even changing the values for cross sections of A1, A2, A3, it won’t be a set of values that makes the stiffness matrices
of the two models equals to each other. From a mathematical point of view, this happens because there isn’t any
linear combination between the two matrices. Even changing the area ratio between the bars in the second model,
the two matrices will be different. The value that makes the two matrices the most similar, is A = 3

4 and A′ = 1√
2
.

So the terms on diagonal will be almost the same, even if it is impossible to equalize the other terms.

c)
This makes sense, because from a physical point of view the two systems are not the same. The first one is a unique
structure and if we want to look at it as an assembly of three elements, they are linked with three interlocking,
which holds stresses in all the directions and transmit also the rotation. On the other hand, the second model is
structure made by three elements linked by three hinges. The hinges, different from the interlocking, doesn’t hold
the rotation.

Moreover, as can be noticed by the methods applied in order to compute both the matrices, there is a difference
in the loads that each structure can handle and how the boundary conditions are applied. In the Turner triangle,
the loads are applied in the whole structure and the whole structure reacts to the loads. In the second model, the
BCs are applied only on the nodes, and the axial directions are the ones that reacts to these loads.

d)
The Poisson coefficient ν describes how the material reacts to the stresses. When ν = 0, the stresses are described
by a diagonal matrix. It means that the stress in one direction, are caused only by a strain in the same direction.
When ν 6= 0, the stress in one direction is generated by displacements in different directions as well. So the matrix
10 describes these materials behaviours depending on the Poisson values. (It can be noticed that if ν = 0 the 10
will be diagonal).

In the case of ν 6= 0, the stiffness matrix of the first model is:

K =
E

2(1− ν2)


1 + 1−ν

2 ν + 1−ν
2 −1 − 1−ν

2 − 1−ν
2 −ν

ν + 1−ν
2 1 + 1−ν

2 −ν − 1−ν
2 − 1−ν

2 −1
−1 −ν 1 0 0 ν
− 1−ν

2 − 1−ν
2 0 1−ν

2
1−ν

2 0
− 1−ν

2 − 1−ν
2 0 1−ν

2
1−ν

2 0
−ν −1 ν 0 0 1

 (20)

It can be noticed that, in the non-diagonal terms, it appears this ν value that is the stress contribution caused by
the strain in other directions. It is evident in the terms K12,K23,K16,K36, and in the respective ones due to the
symmetry of the matrix, that these describes the behaviour of generating stress in directions different from the
displacements one.

Moreover, the stiffness matrix is derived from the MPE principle, so from the energy balance. When ν = 0, the
strains along x and y are zero, so the total internal energy in the body will be smaller than in the case if ν 6= 0. In
fact, the terms of the stiffness matrix, considering ν = 0, are smaller than the ones in the other case. As can be
noticed, the terms of 20 differ from the ones in 13 by a −ν divided by terms of −ν2 and considering that ν < 1,
this will make the terms greater. This match exactly with the physical meaning.

In the second model, it has been used the Direct Stiffness Method (DSM) and the ν coefficient has not been
involved. The bars have been considered linear and the physical meaning is maintained by the Young Modulus and
the section of each bars. The stiffness matrix of the second model won’t be affected by the Poisson ratio.


