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1 Problem Description

1.1 Assignment 3.1

1. Compute the entries of Ke for the following plane stress triangle:

x1 = 0, y1 = 0, x2 = 3, y2 = 1, x3 = 2, y3 = 2 (1)

C =

100 25 0
25 100 0
0 0 50

 , h = 1 (2)

2. Show that the sum of the rows (and columns) 1, 3 and 5 of Ke as well as the sum of rows
(and columns) 2, 4 and 6 must vanish, and explain why.

1.2 Assignment 3.2

Consider a plane triangular domain of thickness h, with horizontal and vertical edges of length a.
Let’s consider a = h = 1 for simplicity. The material parameters are E, v. Initially v is set to zero.
Two structural models are considered for this problem as depicted in the figure:

• A plane linear Turner triangle with the same dimensions.

• A set of three bar elements placed over the edges of the triangular domain. The cross sections
for the bars are A1 = A2 and A3.

Figure 1: Structural Models - Assignment 3.2

a) Calculate the stiffness matrix Ke for both models.

b) Is there any set of values for cross sections A1 = A2 = A and A3 = A′ to make both stiff-
ness matrices equivalent: Kbar = Ktriangle? If not, which are these values to make them as similar
as possible?

c) Why are these two stiffness matrices not equivalent? Find a physical explanation.

d) Solve question a) considering v 6= 0 and extract some conclusions.
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2 Solution

2.1 Assignment 3.1

For a 2D triangular element, the stiffness matrix is given by:

K = h

∫
A

BTCBdA (3)

Where:

• h is the thickness of the element

• B is the kinematic matrix, given by:

B =
1

2A

b1 0 b2 0 b3 0
0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3

 (4)

• A is the area of the element

• bi = yj − yk

• ci = xk − xj

• C is the constitutive tensor, which in this case is the plane stress tensor given by equation
(2).

In order to compute the stiffness matrix, we must first obtain the kinematic matrix of the element:

b1 = −1 b2 = 2 b3 = −1 (5)

c1 = −1 c2 = −2 c3 = 3 (6)

2A = 4 (7)

B =
1

4

−1 0 2 0 −1 0
0 −1 0 −2 0 3
−1 −1 −2 2 3 −1

 (8)

Then, by applying equation (3) we compute the stiffness matrix K:

K =


18.75 9.375 −12.50 −6.25 −6.25 −3.125

18.75 6.25 12.50 −15.625 −31.25
75.00 −37.50 −62.50 31.25

75.00 43.75 −87.50
68.75 −28.125

118.75

 (9)

It may be observed that the sum of all matrix elements corresponding to horizontal degrees of
freedom (1, 3, and 5) of any given row or column is zero, and the same applies for vertical degrees
of freedom (2, 4 and 6). For example, K11 + K13 + K15 = 0. The explanation for this comes from
the physical meaning of the stiffness matrix.
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Element ij of a stiffness matrix represents the force that must be applied to degree of freedom i
when degree of freedom j is subjected to a unitary displacement, while the remaining degrees of
freedom remain restrained. Therefore, the reason for the sum of these elements going to zero is
equilibrium: If degree of freedom 1 is being subjected to a unitary displacement by applying the
force corresponding to K11 on it, degrees of freedom 3 and 5 must be held in place (restrained)
by applying the forces corresponding to K31 and K51 on them, respectively. This implies that the
structure is in equilibrium.

2.2 Assignment 3.2

2.2.1 Plane Linear Triangle Model

The plane stress constitutive tensor as a function of E and v takes the form:

C =
E

1− v2

1 v 0
1 0

1−v
2

 (10)

To compute the stiffness matrix for the plane triangle model, the same procedure applied for As-
signment 3.1 was implemented, obtaining the following results:

b1 = −1 b2 = 1 b3 = 0 (11)

c1 = −1 c2 = 0 c3 = 1 (12)

2A = 1 (13)

Replacing these values in equation (4) yields:

B =

−1 0 1 0 0 0
0 −1 0 0 0 1
−1 −1 0 1 1 0

 (14)

Then, by applying equation (3) and considering that v = 0, we compute the stiffness matrix K:

Ktriangle = E



3
4

1
4
−1

2
−1

4
−1

4
0

3
4

0 −1
4
−1

4
−1

2
1
2

0 0 0
1
4

1
4

0
1
4

0
1
2

 (15)

2.2.2 Bar Structure Model

In order to compute the stiffness matrix of the truss model, we must first know the nodal connec-
tivity of the structural elements and compute the elemental stiffness matrices to then assemble the
global matrix. For this structural configuration, we have the following connectivity and elemental
geometry:
The stiffness matrix for any given element in global coordinates in a 2D truss structure is given by:

k(e) =
EA

l(e)


η2 ηµ −η2 −ηµ

µ2 −ηµ −µ2

η2 ηµ
µ2

 (16)
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Element Node 1 Node 2 Length Cross Section Area Orientation (rad)
1 1 3 1 A π

2

2 1 2 1 A 0

3 2 3
√

2 A’ 3π
4

Table 1: Node Connectivity and Element Geometry

Where:

l(e) is the length of element e.

η = cos(θ)

µ = sin(θ)

θ is the angle of orientation of the element with respect to the positive global x axis.

Hence, computing the elemental stiffness matrices yields:

k(1) = EA


0 0 0 0

1 0 −1
0 0

1

 (17)

k(2) = EA


1 0 −1 0

0 0 0
1 0

0

 (18)

k(3) = EA′
√

2

4


1 −1 −1 1

1 1 −1
1 −1

1

 (19)

Taking into account the contribution to each element to the global stiffness matrix according to the
node connectivity matrix, we then compute the global stiffness matrix of the structural system:

Kbar = E



A 0 −A 0 0 0
A 0 0 0 −A

A+
√
2
4
A′ −

√
2
4
A′ −

√
2
4
A′

√
2
4
A′√

2
4
A′

√
2
4
A′ −

√
2
4
A′√

2
4
A′ −

√
2
4
A′

A+
√
2
4
A′


(20)

2.2.3 Comparison Between Models and Discussion

• Case 1 (v = 0)

Since Ktriangle and Kbar do not share the same non-zero elements, it is not possible to make
them equivalent. Now, to find the values of A and A’ that will make the matrices as similar as
possible, we will force equality between elements 1,1 and 5,5 of both matrices, which leads to the
following results for the case where v = 0:
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3E

4
= EA → A =

3

4
(21)

E

4
=

√
2

4
EA′ → A′ =

√
1

2
(22)

Elements of the bar structure model can only withstand axial loads, which for example results in
element 2 (horizontal element) not contributing any stiffness to vertical degrees of freedom since
these are perpendicular to its axis. Meanwhile, this is not the case for the plane triangle model,
in which the structure behaves as a continuous 2D elastic body within the domain as long as the
loads remain on the mid plane of the structure and are parallel to it.

• Case 2 (v 6= 0)

Considering that now v 6= 0, the stiffness matrix of the triangle model becomes:

Ktriangle = E



(v−3)
4(v2−1)

−1
4(v−1)

1
2(v2−1)

−1
4(v+1)

−1
4(v+1)

v
2(v2−1)

(v−3)
4(v2−1)

v
2(v2−1)

−1
4(v+1)

−1
4(v+1)

1
2(v2−1)

−1
2(v2−1) 0 0 −v

2(v2−1)
1

4(v+1)
1

4(v+1)
0

1
4(v+1)

0
−1

2(v2−1)


(23)

By introducing a Poisson coefficient in the constitutive tensor, the behavior of the structure is
modified since the application of horizontal stresses will result in horizontal deformations and vice
versa. It may be observed that all elements of the matrix depend on both the Young’s modulus
and the Poisson ratio of the material.
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